
1

EDUC-8

EDUCATIONAL MICROCOMPUTER EMULATOR

Project Design by Tony Nixon tnixon059@gmail.com
http://www.teenix.org

I’d like to add my appreciation to Steven Pietrobon for all of his assistance in helping me to get this
project working as close to the original EDUC-8 as I could.

Visit Stevens web blog on building a real EDUC-8.

http://www.sworld.com.au/steven/educ-8/

Disclaimer

The material contained within this package is supplied without representation or warranty of any kind. The author therefore assumes no
responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this material or any part thereof.
.

mailto:tnixon059@gmail.com
http://www.teenix.org/
http://www.sworld.com.au/steven/educ-8/

2

Contents

Introduction

EDUC-8 Architecture

Addressing Modes

Front Panel

Switch Operation

Input / Output

Instruction Format

Memory Reference Instructions

Operational Instructions (OPR) GROUP 0

Operational Instructions (OPR) GROUP 1

Input / Output Transfer Instructions (IOT) INPUT

Input / Output Transfer Instructions (IOT) OUTPUT

Instruction Summary

Original First EDUC-8 Test Program

EDUC-8 Emulator

Menu Items

View Memory Window

Break Points

Assembler Window

Creating an Assembler File

General Line Format

Comments

Labels

Instructions

Direct Memory Reference

Indirect Memory Reference

I/O Instructions

Assembler Directives

Trace Function

EDUC-8 Emulator Options

System Slow Clock Speed

System Fast Clock Speed

Set Output Reset Flag

Sound Effects

Computer Operation Mode

Modules

OCTAL LED Display

DEC HEX LED Display

Keypad

Keypad 2

Paper Tape Reader

 Paper Tape Punch

 Magnetic Tape Storage

 Melody Player

 Printer

 ASCII Keyboard
 Basic Serial Port

 External Switches
 10 Digit Display
 Alphanumeric Display

EDUC-8 Project

 Circuit Description
PCB Construction
Case Assembly

 Circuit Diagram
 Device Interface Circuit
 LED Module Circuit
 KEY Module Circuit
 PCB Top Overlay
 PCB Bottom Overlay
 Switch Functions

USB Interface
 PC Interface

PIC Communications Protocol

Reprogramming the PIC via ICSP.

Zero Page Mode

WIF Mode

Port Interfaces

Port Connections

3

Introduction

The EDUC-8 is an 8-bit microcomputer that was designed by Jim Rowe and the
project construction details were published in Electronics Australia magazine
between August 1974 and January 1975. It did not have a microprocessor as such
as it was constructed with 100 TTL Integrated Circuits that populated 8 circuit boards
It looked like it was going to be the first digital computer to be presented for home
construction, but unfortunately it was pipped at the post by the “Mark-8” project
based on the Intel 8008 microprocessor IC.

To keep the circuit boards simpler, the data paths were serial not parallel and this of
course slowed the processing down as it took longer to shift the information between
the various parts of the circuit.

Processing instructions is based around cycles, each of which requires 24 master
clock pulses to complete. An instruction may take either 2 or 3 of these cycles
depending on the mode of addressing used.

Extra peripherals, such as a keypad, LED display and a punched paper reader were
described in future articles.

To better understand the help file and the computer operation, you could take a look
at the original EDUC-8 Articles. These were published in the Electronics Australia
magazine and are available here, unless the link is broken, in which case contact the
author of this project.

https://archive.org/stream/Educ-8/educ8#page/n11/mode/2up

Basic Specifications

Original Enclosure size 11.5 x 4 x 14 inches

IC Count 100 TTL

Microprocessor None

Circuit Boards 8 single sided

Memory Bytes 32, expanded to 256 at publication

Input Channels 1 Serial, 1 Serial/Parallel

Output Channels 2 Serial

Data Entry Front Panel Switches

Instruction Execution Normal 10KHz, or Slow 24 seconds, @ 500KHz main clock

Instruction Set 28 Instructions

Memory page Size 16 Bytes

Addressing Modes Direct and Indirect

Subroutine Capability Yes, only available memory is the limit

Display Front panel LEDs

Power Supply 5 volt, 60Watt

Note:
The PC emulation cannot keep up with the fast original serial clock rate required for the front panel
LEDs without slowing the code execution, so the emulator display is refreshed at a slower rate. The
hardware project has multiplexed LEDs and is not as described in the original project and so refresh
differently. These issues may give the user the impression that the LEDs are not working properly.
For example, a LED may be flashing on and off very fast but the refresh rate nearly always coincides
when the LED being off and therefore the LED may not appear to do anything, or just briefly flicker.
Operating in slow or single step mode will verify the LED operation.

https://www.siliconchip.com.au/Help/About
https://archive.org/stream/Educ-8/educ8#page/n11/mode/2up

4

EDUC-8 Architecture

The EDUC-8 is an 8 bit machine with 26 instructions

Each instruction incorporates the operation code, the memory address and the type
of addressing mode. It can also include the input/output type and device number.

There are two addressing modes available

 Direct

 Indirect

There are four internal registers for processing.

Accumulator AC
 Used for data computations and transfer

Program Counter PC
 Holds the address for the memory access

Memory Buffer MB
 Acts as a holding register for the memory

Memory Address MA
 Holds the address for accessing memory

Instruction Processing

An instruction using Direct Addressing requires two cycles to complete.

1. Fetch
 Fetch an instruction from memory and decode it
2. Execute
 Process the instruction

An instruction using Indirect Addressing requires three cycles to complete.

1. Fetch
 Fetch an instruction from memory and decode it
2. Defer
 Additional processing required for indirect address computation
3. Execute
 Process the instruction

5

Addressing Modes

Direct Address values encoded in the instruction are 4 bits wide and can only
access blocks of 16 memory addresses, called pages. With 256 bytes
of memory available, there are 16 pages. Instructions can only access
memory within the page that contains the instruction.

Memory Address = (PC AND $F0) + (Instruction AND $0F)

PC Instruction

7 7
 6 6
 5 5
 4 4
 3 3
 2 2
 1 1
 0 0

Indirect Address values encoded into the instruction are 4 bits wide and can
 only access memory within the page that contains the instruction.
 However, in this case the contents of the memory location that the
 address refers to is used to provide an 8 bit indirect address. This then
 can be used to access any address in the 256 byte memory.

Memory Address = (PC AND $F0) + (Instruction AND $0F)

Indirect Address = Contents of memory at that address

The Defer cycle is used to set up the indirect memory address.

PC Instruction Defer Cycles

7 7
 6 6
 5 5
 4 4
 3 3
 2 2
 1 1
 0 0

Memory

Address

Memory

Value

Memory

Address

6

Front Panel

Register LEDs These display the 8 bit status of the PC, MA, MB and AC
 registers.

Instruction LEDs These display the types of instruction being executed.

Cycle LEDs These display the cycle phase of the current instruction.

Program/Address These control how the user inputs or reads information.
Switches

Execute Switches These control program execution

SR<7:0> Switches These set an 8 bit binary value. Logic 1 is up, Logic 0 is down.

LOAD ADDR This writes the memory address as set by the 8 bit switches and
 appears in the MA register.

DEP This deposits the value as set by the 8 bit switches into the
current memory address, then the PC is incremented.
MA shows the address of the byte just written.
ie. Enter a program or data byte

EXAM This examines the value in memory from an address set by the
8 bit switches.
It is displayed in the MB register, then the PC is incremented.
MA shows the address of the byte just read.
ie. Read a program or data byte

Register LEDs
Instruction LEDs Cycle LEDs

SR<7:0> Switches Program/Address Switches Execute Switches

7

RUN This causes a program to begin execution, starting at the current
 memory address

HALT This stops a running program after the end of the current
EXEC cycle. For slow execution mode, the Halt key must be
held down until the last cycle of the current instruction before it
will be recognised.

SINGLE/CONT If set to SINGLE, only 1 instruction will execute if RUN is
 pressed.

If set to CONT, a program will run continuously or until a HALT
 instruction is executed, or the HALT key is pressed.

SLOW/FAST If set to SLOW, the main clock cycle rate will be 2Hz and each
instruction cycle will take 12 seconds to complete. Therefore
normal instructions will take 24 seconds to complete and
defer instructions will take 36 seconds to complete

If set to FAST, the main clock cycle rate is 500KHz. Normal
instructions execute at about 10KHz and Defer instructions
execute at about 6.7KHz.

Switch Operation

For each switch, place mouse in this area and left click for the down position

For each switch, place mouse in this area and left click for the up position

Switches for LOAD ADDR, DEP, EXAM, RUN and HALT will automatically return to
the up position when the mouse button is released.

SR<7:0> Input Switches

These switches enter data as binary numbers, but are arranged in a special EDUC-8
OCTAL format as shown in the lines drawn above the switches.

The first 3 switches correspond to the instruction bits [7,6,5], so the OCTAL format is
set as 7.3.7, not 3.7.7 as would normally be the case for an 8 bit number. The 7.3.7
format is also the original instruction code format used for the EDUC-8 and helps
understand the instruction decoding.

8

Input / Output

The EDUC-8 has 4 serial I/O ports, which includes 2 inputs and 2 outputs. Input Port
Dev0 also has access to the Deposit control and the Load Address control, as well
as a parallel connection to the SR<7:0> switches.

Input Port Connections

Clock Clocks the data on the low going signal
Data In The data bit being received into the computer
Flag Reset A low going pulse to reset the external device
Flag A signal from the external module to inform the computer
 that the external device is ready (LOW)

Output Port Connections

Clock Clocks the data on the low going signal
Data Out The data bit being transmitted from the computer
Flag Reset A low going pulse to reset the external device
Flag A signal from the external module to inform the computer
 that the external device is ready (LOW)

Parallel Connections (Part of Input Device 0)

D7 – D0 Parallel connections to the switches
DEP Parallel connection to the DEPOSIT switch
LA Parallel connection to the LOAD ADDR switch

Some of the extra devices that were described in the articles were:

 OCTAL 3 Digit LED display

 Keypad with 16 keys, providing 30 functions

 Paper Tape read/write

 Music Player

 Burroughs self scan display panel

9

Instruction Format

The EDUC-8 had 26 8 bit instructions and are grouped into 3 separate categories.

Memory Reference Instructions (MR)

These instructions always reference a memory address

Bits 7 6 5 4 3 2 1 0

Opcodes Indirect Memory

000 to 101 Address Address

Control 16 available

Bit 4 0 Direct addressing mode

1 Indirect Addressing mode

Input / Output Instructions (IOT)

These instructions control the input / output data flow

Bits 7 6 5 4 3 2 1 0

Opcode Input Device Operation Type

110 Output Select 3 available

Select

Bit 4 0 Instruction refers to an Input Port

1 Instruction refers to an Output Port

Bit 3 0 Instruction refers to Port 0

1 Instruction refers to Port 1

Operational Instructions (OPR)

These are generally for the accumulator

Bits 7 6 5 4 3 2 1 0

Opcode Instruction Instruction Type

111 Group 4 available for each group

Select

Bit 4 0 Bits 3-0 decode instruction Group 0

1 Bits 3-0 decode instruction Group 1

10

Memory Reference Instructions

AND 000 IND ADDR

Logical AND

AC = AC [AND] Memory[ADDR]

TAD 001 IND ADDR

Two’s Compliment Addition

AC = AC [+] Memory[ADDR]

Bit 7 is the sign bit 0 = Positive

1 = Negative

ISZ 010 IND ADDR

Increment and Skip if Zero

Memory[ADDR] = Memory[ADDR] + 1

If Memory[ADDR] = 0 then PC = PC + 1

(The PC will be incremented twice if this instruction executes as TRUE)

INC 010 IND ADDR

Increment

This instruction does exactly the same as the ISZ instruction. It can be used when
you only want to increment a register and know that it will not wrap around to zero.

DCA 011 IND ADDR

Deposit and Clear Accumulator

Memory[ADDR] = AC

If Memory[ADDR] = 0 then PC = PC + 1

11

JMS 100 IND ADDR

Jump To Subroutine Also see JMP

After this instruction is decoded, the PC is incremented by 1

The PC value is then stored at the address specified by the instruction [ADDR]

PC = (PC and $F0) + [4 bit ADDR]

This is used as the return address for the subroutine

The PC is then incremented again and code continues for the subroutine

To return to the main code, the end of the subroutine should be an indirect jump to
the memory location of the return address.

Example

PC Instruction

4 JMS 10

5 main code continues after subroutine returns

10 The computer stores 5 in this location

11 subroutine code

.

15 JMP 10 I An indirect jump to memory address 10

The [5] stored there becomes the new PC value

The main code continues from address 5

JMP 101 IND ADDR

Jump To Memory Address

PC = (PC and $F0) + [4 bit ADDR]

As with the JMS instruction, for a DIRECT instruction, the computed memory
address will only be in the 16 byte block where the instruction resides.

Example

PC = $02 JMP can only be between $00 and $0F

12

PC = $24 JMP can only be between $20 and $2F

If the JMP or JMS is an INDIRECT instruction, the computed memory address will be
the 8 bit value stored in the address from the instruction. Therefore, the PC can be
set to anywhere within the 256 byte memory range.

Operational Instructions (OPR)

GROUP 0 (Bit 4 = 0)

IAC 111 0 0001

Increment Accumulator

AC = AC + 1

RAL 111 0 0010

Rotate Left Accumulator

Shift all bits to the left, bit 7 becomes bit 0.

AC

If Bit 7 = 0, then after RAL, the value in AC will double, as long as the initial value
was less than 128.

CMA 111 0 0100

Complement Accumulator

All 1 bits become 0, all 0 bits become 1

AC = AC XOR 255

13

CLA 111 0 1000

Clear Accumulator

AC = 0

The EDUC 8 computer can execute all of the instructions of the same Group. It will
execute each of the instructions starting from bit 3 down to bit 0. Therefore you can
have combined instructions that will save memory space. Some bit combinations will
not make sense so only the following are implemented.

CLA,IAC 111 0 1001

Clear Accumulator, then Increment accumulator

AC = 1

CLA,CMA 111 0 1100

Clear Accumulator, then Complement Accumulator

AC = 255

CMA,IAC 111 0 0101

Complement Accumulator, then Increment Accumulator

AC = negative AC (Bit 7 is the sign)

14

Operational Instructions (OPR)

GROUP 1 (Bit 4 = 1)

HLT 111 1 0001

Halt program execution

RAR 111 1 0010

Rotate Right Accumulator

Shift all bits to the left, bit 0 becomes bit 7.

AC

If Bit 0 = 0, then after RAL, the value in AC will halve.

SMA 111 1 0100

Skip on Minus Accumulator

The PC is incremented during the FETCH cycle, and then the EXEC cycle begins.

If AC Bit 7 = 1, then PC = PC +1

(ie. The PC will be incremented twice if this instruction executes as TRUE)

15

SZA 111 1 1000

Skip on Zero Accumulator

The PC is incremented during the FETCH cycle, and then the EXEC cycle begins.

If AC = 0 then PC = PC +1

(The PC will be incremented twice if this instruction executes as TRUE)

The EDUC 8 computer can execute all of the instructions of the same Group. It will
execute each of the instructions starting from bit 3 down to bit 0. Therefore you can
have combined instructions that will save memory space. Some bit combinations will
not make sense so only the following are implemented.

SZA,SMA 111 0 1100

Skip if Accumulator is Zero or Minus

If (AC = 0) OR (AC bit 7 = 1) then PC = PC +1

(ie. The PC will be incremented twice if this instruction executes as TRUE)

Input / Output Transfer Instructions (IOT)

INPUT DEVICES

SKF 110 0 Dev 001 (Dev = 0, or Dev = 1)

Skip on Input Device Flag

If the Input (Device) flag is set (LOW) then PC = PC + 1

(ie. The PC will be incremented twice if this instruction executes as TRUE)

16

KRS 110 0 Dev 010 (Dev = 0, or Dev = 1)

Read Input Data

8 clock cycles will be presented to the Input Device. The 8 bits of data from the
device will be read into the Accumulator on the falling edges of these clock cycles

RKF 110 0 Dev 100 (Dev = 0, or Dev = 1)

Reset Input Flag

A brief LOW pulse will be generated on the Reset Flag line for the Input Device.

KRB 110 0 Dev 110 (Dev = 0, or Dev = 1)

(Combination of KRS and RKF)

Read Input Data

Reset Input Flag

8 clock cycles will be presented to the Input Device. The 8 bits of data from the
device will be read into the Accumulator on the falling edges of these clock cycles

A brief LOW pulse will then be generated on the Reset Flag line for the Input Device.

Input / Output Transfer Instructions (IOT)

OUTPUT DEVICES

SDF 110 1 Dev 001 (Dev = 0, or Dev = 1)

Skip on Output Device Flag

If the Output (Device) flag is set (LOW) then PC = PC + 1

(The PC will be incremented twice if this instruction executes as TRUE)

17

LDS 110 1 Dev 010 (Dev = 0, or Dev = 1)

Send Output Data

8 clock cycles will be presented to the Output Device. The 8 bits of data from the AC
will be sent to the Output Device on the falling edges of these clock cycles.

Also clears AC to 0.

RDF 110 1 Dev 100 (Dev = 0, or Dev = 1)

Reset Output Flag

A brief LOW pulse will be generated on the Reset Flag line for the Output Device.

LDB 110 1 Dev 110 (Dev = 0, or Dev = 1)

(Combination of LDS and RDF)

Send Output Data

Reset Output Flag

8 clock cycles will be presented to the Output Device. The 8 bits of data from the AC
will be sent to the Output Device on the falling edges of these clock cycles.

A brief LOW pulse will be generated on the Reset Flag line for the Output Device.

NOTE: A link on the EDUC-8 Input / Output PCB could be set to change the
 order of the reset flag and the data output.

Reset Output Flag at T1

Send Output Data

or

Send Output Data

Reset Output Flag at T13

18

Instruction Summary

MEMORY REFERENCE INSTRUCTIONS - (XX = operand address and mode)

Mnemonic Operation OCTAL Code

AND Logical AND OXX

TAD 2 's complement add 1XX

ISZ Increment and skip if zero 2XX

DCA Deposit and clear AC 3XX

JMS Jump to subroutine 4XX

JMP Jump 5XX

OPERATE (OPR) MICROINSTRUCTIONS

Mnemonic Operation OCTAL Code

NOP No operation 700

IAC Increment AC 701

RAL Rotate AC one bit left 702

CMA Complement AC 704

CLA Clear AC 710

NOP No operation 720

HLT Halt at end of execute cycle 721

RAR Rotate AC one bit right 722

SMA Skip on minus AC 724

SZA Skip on zero AC 730

COMBINED OPR MICROINSTRUCTIONS

Mnemonic Operation OCTAL Code

CLA. IAC Set AC to contain 0 171

CLA.CMA Set AC to contain1 714

SZA.SMA Skip if AC is zero or minus 734

CMA.IAC Complement and increment AC (2’s comp) 705

INPUT/OUTPUT TRANSFER (IOT) INSTRUCTIONS

Mnemonic Operation OCTAL Code

SKF Skip on input flag 601,611

SDF Skip on output flag 621,631

KRS Read input buffer 602,612

LDS Load output buffer 622,632

RKF Reset input flag 604,614

RDF Reset output flag 624,634

COMBINED IOT INSTRUCTIONS

Mnemonic Operation OCTAL Code

KRB Read input buffer, reset flag 606,616

LDB Load output buffer, reset flag 626,636

19

Original First EDUC-8 Test Program

START, CLA / 710 clear AC

INCR, IAC / 701 increment AC

BACK, NOP / 700 a small delay

NOP / 700 a small delay

ISZ INDX / 211 if INDX <> 0 then

JMP BACK / 502 jump to BACK

ISZ INDY / 212 incr INDY and if INDY <> 0 then

JMP INCR / 501 jump to INCR

HLT / 721 else, INDY = zero, all done, stop

INDX, #0 / 000 Delay counter 1

INDY, #0 / 000 Delay counter 2

This file is available in the install directory.

EDUC first.asm

20

EDUC-8 Emulator

The EDUC-8 Emulator simulates the operation of the original EDUC-8
Microcomputer.

Menu Items

Accessed by right clicking the computer

View Memory Open ROM Memory viewer window
View RAM Open RAM Memory viewer window - WIF only
View EEPROM Open EEPROM Memory viewer window – WIF only
Assembler Opens the Code Assembler window
Modules Connect EDUC-8 to any of the available modules

EDUC-8 via USB Opens the PC Interface

Set SR Switches Sets all SR<7:0> switches to Logic 0 or Logic 1
Initialize Set registers to 0, 255, or random.

Options See Options
Speed / Animate Opens an area on the main window to set the emulation
 speed of the clock cycles in slow mode and use the auto
 animate instruction feature.
Code Trace Opens a window to view the current code execution trace

Help Opens this help file
About View about information
Exit Closes the program
 On closing, the current status of all open windows will
 be saved and they will appear again on program start.

The computer can be moved around by left clicking the computer above the LED
windows and dragging it.

21

View Memory Window

The Memory Viewer window shows the values of all the main internal registers.

Program Counter PC
Memory Address MA
Memory Buffer MB
Accumulator AC
IN Port 0 IN 0
IN Port 1 IN 1
OUT Port 0 OUT 0 In / Out Flags
OUT Port 1 OUT 1 In / Out Flags

All memory locations are displayed beneath these registers.
The values are displayed in Decimal, Hexadecimal, Octal and Binary.
The bottom bar shows the status of various operating flags and options.
The code column will show the disassembled code as created from the Assembler
Window.

Menu Items

Count Clears the current executed code counter value
Paper Tape Save the current memory as a Tape File.
Breaks Ignore Set break points are ignored
 Clear All Clears all break points

Break Points

Code break points can be set or cleared by clicking on the address cell of a memory
location from the memory window.

If the code has been assembled and transferred to memory, then break points can
also be set or cleared by double clicking a line in the source code.

If you wish to ignore all of the set break points, then click the Ignore Breaks check
box from the Editor menu.

 Click to set/clear

 No Break Point Set Break point is set Break point is set
 but ignored

22

Assembler Window

This window allows you to create source code for the EDUC-8 computer and then
assemble it into binary code which can be executed.

Menu Items

New Create a new file
Open Open a previously saved file
Open Last Opens the last file that was used
Recent Files A list of previously saved files which can be opened.
Save Save the current file
Save As Save the current file with a new filename

Exit Closes the Assembler Window
Help Opens this help file

Assemble Assemble the current file
Transfer to memory On successful assembly, transfer the binary code to the
 computer and memory windows.
Set PC at cursor Sets the PC at the cursor address
Set memory at cursor Sets the memory viewer top row at the cursor address
Find Find text in the opened file
Clean Trim code of all trailing spaces and format codes (ie tabs)

Creating an Assembler File

General Line Format

The format of each line is fairly straight forward.

Label Instruction Comment

START, CLA / clear AC

The text for the assembler file is not case sensitive.

CLA and cla or Start, and start, are considered to be the same.

To be assembled correctly, lines cannot wrap around to the next line.

Comments

Comments are preceded by the “/” character. Everything after this character on a
particular line will be ignored by the assembler.

23

Labels

Labels are used to provide names for addresses in the computer memory. They are
used as targets for instructions like JMP or JMS, or they provide a memory address
for Memory Reference instructions like AND or TAD

Labels on each line are optional, but must be at the start of a code line.
The label name must be unique and terminated by a comma.
The maximum characters allowed for each label name is 10 and allowed characters
are in the ranges: “0..9”, “a..z”, “A..Z”.

Examples: Start,
Here,

AddNumber,

Code Examples: Here, RAL / target label for JMP
JMP Here

TAD Save / target label for Save address

HLT

Save, #d0 / Save initialized with 0

Mult, / Mult initialized with 0

Total, Here / Total initialized with Here

/ address

Any address can be specified by a label, or as a discrete value.

Discrete values must be in the range 0 – 255.
They must be preceded by the pound character (#).
They can be specified as:

Type Number Preceded by Example

Decimal #D #D255

Hexadecimal #$ #$FF

OCTAL #0 (zero) #0377

EDUC OCTAL #E #E737

Binary #B #B11111111

Music Note #N [Delay] [Octave] [Note] #N11C#

Examples: ISZ #$FF / Truncated to 15 ($0F) to fit in

 / instruction ISZ bits 3-0
INDX, #d255 / INDX initialized to 255 decimal

INDX, #$0F / INDX initialized to 15 decimal

Two’s Complement numbers can be represented by a negative sign.

INDX, #D-2 / Value entered in RAM = 254

Negative numbers can only be in the range -128 to -1.

24

JMP Computed PC

Address begins with a period (.)

Expects (+) or (-) next

Expects decimal value next (0 ..15)

Examples JMP .+2 / jumps to current PC + 2

 JMP .-4 / jumps to current PC – 4

Computed jumps must fit inside the current 16 byte page.

Music Notes

 Start with #N

Delay 0 – 3

 Octave 0 – 3

 Note C, C#, D, D#, E, F, F#, G, G#, A, A#, B, X

 (X is a silent note for the selected delay)

Examples #N21A / Note, Delay=2, Octave=1, A

 #N12G# / Note, Delay=1, Octave=2, G Sharp
 #N30X / Note, Delay=3, Octave=0, Silent

Characters

Printer Chars These characters conform to the Printer module character set
 Each character must be enclosed in double quotes.

Examples #P”S”

 #P”^”

ASCII Chars ASCII characters within the range Chr(0) to Chr(127) can be
 entered. Each character must be enclosed in double quotes.

Examples #”A” / ASCII A (65)
 #” ” / ASCII space (32)

Note: The Alphanumeric Display module only uses ASCII characters in the range

Chr(32) to Chr(126). ([space] to [tilde])

25

Instructions

The instructions are called mnemonics and are used to tell the assembler what
binary value will be generated for the computer.

CLA / clear AC

IAC / increment AC

NOP / do nothing

Instruction Data

Some instructions require extra data to be specified to execute properly.

Memory Reference instructions require a memory address and whether that address
is to be used as a DIRECT address or an INDIRECT address.

OPR Instructions do not require extra data.

IOT Instructions require the DEVICE number specified.

MR Examples:

Direct Memory Reference

ISZ INDX the compiler will generate the binary value 0100aaaa

TAD MEMORY the compiler will generate the binary value 0010aaaa

If the argument [I] follows a memory reference instruction then the address is

considered to be indirect.

Indirect Memory Reference

ISZ I INDX the compiler will generate the binary value 0101aaaa

TAD I MEMORY the compiler will generate the binary value 0011aaaa

Note: (aaaa) represents the address where the label resides in memory.

Assume INDX is assembled for memory addresses 15, or 31, or 63 or 255.

ISZ INDX I the compiler will generate the binary value 01011111

OPR Examples:

CLA the compiler will generate the binary value 11100000

IAC the compiler will generate the binary value 11100001

26

I/O Instructions

The actual I/O instruction specifies whether the instruction refers to an input or
output device, but to complete the instruction, it requires a device argument.

There are 2 devices available for the EDUC-8.

Device arguments are: 0 Device 0

1 Device 1

Examples

LDB 0 / output device 0

SDF 1 / output device 1

SKF 0 / input device 0

KRS 1 / input device 1

Apart from typing in instructions, they can also be entered from the
instruction listings on the right of the assembler screen. These are
sorted into the different code types.

To include one of these instructions in the source code, for example,
JMP, double click on it.

27

Assembler Directives

Assembler Directives are additional instructions that are not compiled into computer
code. They are used to do various functions during assembly.

Assembler Directives start with an underscore character.

_PAGEBREAK This directive sets the PC to the start of the next available
 memory page.

Examples
1) If PC = $0C 2) If PC = 135 decimal ($87 hex)

_PAGEBREAK _PAGEBREAK

PC now = $10 PC now = 144 decimal ($90 hex)

_SETPC This directive sets the PC to a specific memory address.
_setpc values can be in any radix, Eg Dec, Hex, Oct, or Bin

Examples
1) _setPC #$22 2) _setPC #b1001

PC = $22 PC = 9 decimal

_SUBRETURN This directive inserts the value ‘0’ into the current PC address.

It is useful for remembering that the location is used for the
return address of a subroutine.

_NOTEDELAY This directive sets the note delay for the Melody Player module.

The lower the number, the shorter the delay.
The delay range is 50 to 500.
The delay value must be in entered in Decimal format.

Example _NOTEDELAY 100

_STRING This directive allows entry of strings into memory
 String characters conform to the Printer module character set
 The maximum string length is 18 characters
 Strings must be enclosed in double quotes.

Example _STRING “Hello from EDUC-8”

_ISZEROPAGEOFF

_ISZEROPAGEON These directives will test to see if the Page Zero flag is set
properly from the options menu. It is used to serve as a
reminder that one of these modes of operation is required for the
program being written. If the current Page Zero mode is not
matched then an error message will be displayed.

28

_ISRESETT1

_ISRESETT13 These directives will test to see if the T1 T13 flag is set properly
from the options menu. It is used to serve as a reminder that
one of these modes of operation is required for the program
being written. If the current T1 or T13 mode is not matched then
an error message will be displayed.

Key Short Cuts for the editor screen.

 Assemble F9
 Transfer to memory F8

Load Address F2
Run F3
Halt F4

Trace Function

The trace function allows you to see each code line execute in the Memory View
window when in Single or Slow modes of operation.

Trace mode is enabled after successfully transferring the assembled file to the
EDUC-8 memory.

You can also get a trace listing of the code execution by right clicking the computer
for the popup menu and select [Code Trace] and make sure [On] is checked.

Once enabled a trace buffer will log the instructions as they are executed.

The trace buffer will log a maximum of 500 instructions and during fast run mode will
fill in around 50mS. When full, the first item captured is deleted from the buffer so
that a new item can be added to the end.

The best way to use the code trace is with break points set at critical execution
points. You can then see what code led up to the break point, otherwise the buffer
can fill with code that is of no use.

The code trace buffer is cleared on each of the following...

 The Run switch is pressed in continuous mode

 The assembled code is transferred to EDUC-8 memory

 The Code Trace is selected to On

 Manually cleared

29

EDUC-8 Emulator Options

System Slow Clock Speed

The Slow master clock speed can be adjusted from the menu item [Speed Control].
The lower main screen will open to show a slider bar to increase or decrease the
clock speed. This can slow simulations down and make them more readable. The
default button sets the cycle to the default 2Hz.

The Animate button will step the emulation automatically at a rate determined by the
animate speed control. Animate will only work if the Single/Cont switch is in the Cont
position and the Slow/Fast switch is in the Fast position.

From the [Options] menu item.

System Fast Clock Speed

This item sets the FAST master clock speed for simulation, as the actual clocking
speed might vary between different computers. Click [Default] to set the saved
default speed. Click[Save Speed as Default] to set the current speed as default.

The EDUC-8 “First” program takes 262,657 instructions to complete. At around

10KHz instruction cycle time, the program should run for about 26 seconds. You
should be able to set the Fast Speed adjustment to accomplish this time then if you
like, save that speed setting as default.

Operation Mode

Set Normal or WIF operational mode.

Set Output Reset Flag

The original EDUC-8 I/O board has a circuit board link that can select if the Output
Device is reset on the T1 cycle or the T13 cycle. This allows some flexibility for
output devices that require a reset before the data is transferred or a reset after the
data is transferred. This option sets the IO mode of operation.

Computer Page Zero Operation Mode – Normal mode only

This switch can activate a special page zero addressing modification which allows
variables from RAM pages to be accessed from Page 0. Only instructions AND,
TAD, ISZ, DCA and JMS I can be used to take advantage of this type of addressing.

Example

Operation Mode = Page Zero

VAL, #$0F / Value in Page 0

 _SETPC #E720 / Code is in Page 15

START, CLA / AC = 0

 CMA / AC = $FF

 AND VAL / AC = VAL AND AC = $0F AND $0F = $0F (VAL was in Page Zero)

 HLT

30

Radix

This option sets the default radix that shows how data listed in various parts of the
program. It can be set to 737 or 377 OCTAL, HEX or Decimal.

Sound Effects

Check this item if you want sound effects enabled.

Clear all memory before code compile

Check this item if you want all unused memory set to zero when compiling new code
Unused memory is memory which is not part of the assembled file.

Clear all RAM before code compile – WIF only

Check this item if you want all RAM set to zero when compiling new code.

Clear all EEPROM before code compile – WIF only

Check this item if you want all EEPROM set to $FF when compiling new code.

Allow Slow Exam Deposit – Normal mode only

The EDUC-8 computer will start Run Mode if either the Deposit or Examine switches
are activated when Slow running is selected. This can be annoying at times so you
can enable the Deposit or Examine functions in slow mode by selecting this item.

Note: Extra LED indicators are lit when the following user options are enabled.

 WIF Mode, Slow Deposit/Examine, T1 Reset, Page Zero Mode
 These LEDs were not part of the original EDUC-8 design.

Upload only assembled code

Usually all memory is transferred to the project module from the USB interface. Only
assembled code will be transferred to the project module if this item is checked.

Auto slow step on break

If this item is checked, then if a break point is reached during code execution, the
Single/Cont switch will be put into the Single position.

31

Modules

Most of the emulated modules presented here are representative of the modules
described in the original project articles, others were added.

OCTAL LED Display

Only one OCTAL LED Display module can be used.

When selected, a small window will open to allow selection of a free output device.

Your code should refer to this device when accessing the module.

Menu Items

Accessed by right clicking the LED display module.

Options

Display Format 377 Normal OCTAL

737 EDUC-8 OCTAL

Ready Delay Sets the delay before the Ready Flag is reset to LO.

2 – 20 seconds

Display Type Select LED or Nixie Tube

Reset Resets the LED Display Module

Disconnect Disconnects the LED Display Module

A sample code file for this module is available in the install file and is written for
Output Device 0.

EDUC8 LED.asm

EDUC8 Multiply.asm

The LED Display can be moved around by left clicking the module and dragging it

32

DEC HEX LED Display

Only one Decimal/Hexadecimal LED Display module can be used.

When selected, a small window will open to allow selection of a free output device.

Your code should refer to this device when accessing the module.

Menu Items

Accessed by right clicking the LED Display module.

Options

Display Format Leading Blank Zeros

Leading Zeros
Signed Byte (Bit 7 indicates negative)
Hexadecimal

Ready Delay Sets the delay before the Ready Flag is reset to LO.

2 – 20 seconds

Display Type Select LED or Nixie Tube

Reset Resets the LED Display Module

Disconnect Disconnects the LED Display Module

A sample code file for this module is available in the install file and is written for
Output Device 0.

EDUC8 LED.asm

EDUC8 Multiply.asm

The LED Display module can be moved around by left clicking the module and
dragging it.

33

Keypad

Only one Keypad module can be used.

When selected, a small window will open to allow selection of a free input device.

Your code should refer to this device when accessing the module.

Menu Items

Accessed by right clicking the Keypad module.

Options

Reset Resets the Keypad module

Disconnect Disconnects the Keypad module

A sample code file for this module is available in the install file and is written for
Output Device 0.

EDUC8 Keypad.asm

The Keypad module can be moved around by left clicking the module and dragging
it.

34

Keypad 2

Only one Keypad 2 module can be used.

When selected, a small window will open to allow selection of a free input device.

Your code should refer to this device when accessing the module.

Menu Items

Accessed by right clicking the Keypad module.

Options

Key Data Set A window will open and allow you to set the captions for
 each key on the keypad. The maximum characters for
 each key name is 3.

 Keys can also be assigned a value and made invisible.

 If the key caption is blank, the key will not trigger an event

when pressed.

Load Load a key configuration file
Save Save the current key configuration

Reset Resets the Keypad module

Disconnect Disconnects the Keypad module

A sample code file for this module is available in the install file and is written for
Output Device 0.

EDUC8 Keypad.asm

A more complex calculator program is available called WIF Calculator.asm and

must be used in WIF mode.

The Keypad module can be moved around by left clicking the module and dragging
it.

35

Paper Tape Reader

Only one Paper Tape Reader module can be used, in normal mode only

As this device uses the parallel connections for the SR<7:0>, LOAD ADDR and DEP
switches, this device can only connect to Input Device 0.

Your code should refer to this device when accessing the module.

Menu Items

Accessed by right clicking the Paper Tape Reader module.

Load Tape Loads a Paper Tape file into the reader. If successful the

program tape will be inserted into the reader ready for use.
 The first byte on the tape is a “Start” byte – 128 decimal
 The second byte on the tape is the “Start Address” byte where

the program will start loading into memory.

Reset Resets the Paper Tape Reader module

Disconnect Disconnects the Paper Tape Reader module

Code is not required for the Paper Tape Reader to operate, as the reader controls
the computer data transfers.

The Paper Tape Reader module can be moved around by left clicking the module
and dragging it.

After loading a program file, click
this button to start the reader and
transfer the data to the computer

Fault LED

36

Paper Tape Punch

Only one Paper Tape Punch module can be used, , in normal mode only.

When selected, a small window will open to allow selection of a free output device.

Your code should refer to this device when accessing the module.

Menu Items

Accessed by right clicking the Paper Tape Punch module.

Save Tape Saves the punched paper tape to a disk file.

Reset Resets the Paper Tape Punch module

Disconnect Disconnect the Paper Tape Punch module

A sample code file for this module is available in the install file and is written for
Output Device 0. This is a copy of the program from the original article Interfacing to
Punched paper Tape – pg 73.

EDUC8 Punch.asm

There is also another simple program that will transfer a section of computer memory
to tape.

 Mem Punch.asm

The Paper Tape Punch module can be moved around by left clicking the module and
dragging it.

Click this button to insert a blank
program tape into the punch
module.

Fault LED

37

Magnetic Tape Storage

Only one Magnetic Tape Storage module can be used, , in normal mode only.

When selected, a small window will open to allow selection of a free output device
and a free input device.

Your code should refer to these devices when accessing the module.

 Tape Counter
 Counter Reset
 Tape Name

 Button operate area

 Tape Buttons
Menu Items

Accessed by right clicking the Tape Storage module.

Tape New Place a new tape in the player
 Load Load a tape for the player
 Save Save current tape in player
 Erase Erase the current tape in player
 Eject Eject the tape from the player
 Playlist Opens a text editor to enter stored program details

Reset Resets the Tape Storage module

Disconnect Disconnect the Tape Storage module

A sample code file for using this module in RECORD mode is available in the install
file and is written for Output Device 0.

EDUC8 Tape Write.asm

This code will save a program to tape that will play the Green Sleeves melody.

To operate the tape player for recording, position the tape ready to record by using
the FF, RWD or Play buttons. Rewind back to the start for this exercise. If the
counter is not showing [000], reset it.

Load Address 3. Press RECORD, then press Run on the computer.

The computer will stop writing data after the COUNT value has reached 0. Press the
STOP button on the tape player.

38

Save the tape by selecting the Tape Save menu item.

There is also a sample code file to use the player in PLAY mode and will read the file
back into the computer memory using Input Device 0.

EDUC8 Tape Read.asm

Load, assemble and transfer the program to memory.

Connect the Melody Player module to Output Device 1.
Rewind the tape.
Load Address 6, then press Run on the computer.
Press the PLAY button.

The ADDRESS memory location will increment each time a byte of data is read from
the tape. When this stops incrementing, the program has loaded.

Press HLT.

Press STOP on the tape player.

The Green Sleeves program starts at EDUC-8 OCTAL address 111. Set this on the
switches and click LOAD ADDR.

Press RUN. The Green Sleeves melody should play.

There is a pre-recorded tape file that has this program and can be loaded with the
Tape Load menu item. The program is at the start of the tape.

Green Sleeves.mtf

NOTE: If the tape player is left in PLAY mode and there are additional bytes
 found on tape they will also be loaded into the computer unless your
 program can halt itself after loading.

The Magnetic Tape Player module can be moved around by left clicking the module
and dragging it.

39

Melody Player

Only one Melody Player module can be used.

When selected, a small window will open to allow selection of a free output device.

Your code should refer to this device when accessing the module.

 Fault LED

 This will light if the
 PC Midi interface is not
 working with the software

Menu Items

Accessed by right clicking the Melody Player module.

Voice Sets a voice for the Melody Player module
 Piano
 Chimes
 Synth
 Noise

Speed Sets the note delay period

Reset Resets the Melody Player module

Disconnect Disconnect the Melody Player module

A sample code file for this module is available in the install file and is written for
Output Device 0. This is a copy of the program from the original article Teaching
your EDUC-8 to play a melody – pg 81.

EDUC8 Melody1.asm

There is also a copy of this music with the data in note format and words included.

EDUC8 Melody2.asm

See: Music Notes

The Melody Player module can be moved around by left clicking the module and
dragging it.

40

Printer

Only one Printer module can be used.

When selected, a small window will open to allow selection of a free output device.

Your code should refer to this device when accessing the module.

 Left click area to
 move printer

 Line Feed

Menu Items

Accessed by right clicking the Melody Player module.

Printer Roll Load Load a saved printer roll
 Save Save the current printer roll
 Print Print the current printer roll to a real printer
 Discard Discard the current printer roll

Reset Resets the Printer module

Disconnect Disconnect the Printer module

The printer uses the character set as described for the Philips 60SR Printer Unit.

Allowed characters are:

0..9 A..Z @[\]!”$%&’()*+,-./:;<=>? Space

= Pound ₤

^ =

_ =

Example

/ print message from article

/ 1st 3 lines have a repeating space to fill a complete line

 _STRING “HELLO,I'M EDUC-8 --~ “

 _STRING “SPEAKING TO YOU VIA~ “

 _STRING “THE PHILIPS 60SR~ “

 _STRING “MATRIX PRINTER@” / ends with msg terminator char (@)

41

The “~” character adds 128dec to the following printer character. This causes the
following character to be printed across the remaining print line.

Example

 _PRINT “~*HELLO WORLD!~ ~*” / character repeat example

A sample code file for this module is available in the install file and is written for
Output Device 0. This is a copy of the program from the original article Interfacing
the EDUC-8 with the Philip 60SR Printing Unit – pg 66.

EDUC8 Printer.asm

Also included is a program to print out all of the printer codes as described in the EA
’75 article on page 69.

Note: To better understand how the printer works, please read the original article
 – EA April 1975 Pg 66.

42

ASCII Keyboard

Only one ASCII Keyboard module can be used.

When selected, a small window will open to allow selection of a free output device.

Your code should refer to this device when accessing the module.

 Red LED,
ASCII Keyboard

 inactive

Please note that in order for the ASCII keyboard to respond to the PC keyboard, the
ASCII keyboard should have focus by clicking on it. This is indicated by a Green LED
glowing.

Menu Items

Accessed by right clicking the ASCII Keyboard module.

Reset Resets the ASCII Keyboard module

Disconnect Disconnect the ASCII Keyboard module

A sample code file for this module is available in the install file and is written for Input
Device 0. It also uses the Decimal LED module on Output Device 0.

EDUC8 ASCII.asm

The ASCII Keyboard module can be moved around by left clicking the module and
dragging it.

43

Keyboard ASCII Table

Value Character PC Key(s) Value Character PC Key(s)

0 NUL CTRL 0 64 @ SHIFT 2

1 SOH CTRL 1 65 A SHIFT A

2 STX CTRL 2 66 B SHIFT B

3 ETX CTRL 3 67 C SHIFT C

4 EOT CTRL 4 68 D SHIFT D

5 ENQ CTRL 5 69 E SHIFT E

6 ACK CTRL 6 70 F SHIFT F

7 BELL CTRL 7 71 G SHIFT G

8 BACK SPACE BK SPC 72 H SHIFT H

9 HOR TAB TAB 73 I SHIFT I

10 LINE FEED SHIFT ENTER 74 J SHIFT J

11 VERT TAB SHIFT TAB 75 K SHIFT K

12 FORM FEED PG UP 76 L SHIFT L

13 CAR RETN ENTER 77 M SHIFT M

14 SHIFT OUT HOME 78 N SHIFT N

15 SHIFT IN END 79 O SHIFT O

16 DLE ALT 0 80 P SHIFT P

17 DC1 ALT 1 81 Q SHIFT Q

18 DC2 ALT 2 82 R SHIFT R

19 DC3 ALT 3 83 S SHIFT S

20 DC4 ALT 4 84 T SHIFT T

21 NAK ALT 5 85 U SHIFT U

22 SYN ALT 6 86 V SHIFT V

23 ETB ALT 7 87 W SHIFT W

24 CAN CTRL ALT 0 88 X SHIFT X

25 EM CTRL ALT 1 89 Y SHIFT Y

26 SUB CTRL ALT 2 90 Z SHIFT Z

27 ESCAPE ESC 91 [[

28 FS CTRL ALT 4 92 \ \

29 GS CTRL ALT 5 93]]

30 RS CTRL ALT 6 94 ^ SHIFT 6

31 US CTRL ALT 7 95 _ SHIFT -

32 SPACE SPACE 96 ` `

33 ! SHIFT 1 97 a A

34 " SHIFT ' 98 b B

35 # SHIFT 3 99 c C

36 $ SHIFT 4 100 d D

37 % SHIFT 5 101 e E

38 & SHIFT 7 102 f F

39 ' ' 103 g G

40 (SHIFT 9 104 h H

41) SHIFT 0 105 i I

42 * SHIFT 8 106 j J

43 + SHIFT = 107 k K

44 , , 108 l L

45 - - 109 m M

46 . . 110 n N

47 / / 111 o O

48 0 0 112 p P

49 1 1 113 q Q

50 2 2 114 r R

51 3 3 115 s S

52 4 4 116 t T

53 5 5 117 u U

54 6 6 118 v V

55 7 7 119 w W

56 8 8 120 x X

57 9 9 121 y Y

58 : SHIFT ; 122 z Z

59 ; ; 123 { SHIFT [

60 < SHIFT , 124 | SHIFT \

61 = = 125 } SHIFT]

62 > SHIFT . 126 ~ SHIFT `

63 ? SHIFT / 127 DEL DEL

44

Basic Serial Port

Only one Test Serial Port module can be used.

WIF mode use only.

The Test Serial module acts as a dumb terminal for the emulator.

Data that is received by the module is displayed in the SERIN box.

Data to be transmitted can be set in the SEROUT drop down list then when ready to
send it, check the Ready item. As soon as the data is sent, the Ready item will be
cleared.

If the Mirror item is checked, any data that is received is re-transmitted.

Re-transmitting of the data can be delayed by selecting a value (in seconds) in the
Mirror Delay drop down list. If this value is [0] then the data will be re-transmitted as
soon as it is received.

Disconnect the Test Serial Port

Serial data IN Serial data OUT

45

External Switches

Only one External Switches module can be used.

Normal Mode

WIF Mode

The External Switches module provides simulation for the switches connected to the
Dev 0 parallel input port. These connect in parallel to the SR<7:0>, LA and DEP
(TRIG1) switches.

Menu Items

Accessed by right clicking the External Switches module.

Set Switches Sets all switch positions to 1 or 0

Disconnect Disconnect the External Switches module

The External Switches module can be moved around by left clicking the module
above the switches and dragging it.

Note: See IO Port Interfaces

46

10 Digit Display Module

Only one 10 digit display module can be used.

This display module emulates a 10 digit miniature 7 segment display.

 Calculator Display Clock Display

Menu Items

Accessed by right clicking the 10 Digit Display module.

Reset Resets the 10 Digit Display module

Disconnect Disconnect the 10 Digit Display module

When the display module is connected, the Ready line will be pulled LOW so display
data can be sent at any time.

Character Set

Control Codes

$40..$49 Set Character index

$50 Turn display OFF

$60 Displays “Error”

$5F Turn display ON

$70 Initialize display

All other data is ignored.
The character index is incremented each time a new character is sent.
These characters and codes have default assembler constants defined.

The 10 Digit Display module can be moved around by left clicking the module above
the switches and dragging it.

 0 Digit 0

 1 Digit 1

 2 Digit 2

 3 Digit 3

 4 Digit 4

 5 Digit 5

 6 Digit 6

 7 Digit 7

 8 Digit 8

 9 Digit 9

 10 -

 11 :

 12 .

 13 BLANK

 14 A

 15 b

 16 C

 17 c

 18 d

 19 E

 20 F

 21 G

 22 H

 23 h

 24 I

 25 i

 26 J

 27 L

 28 n

 29 o

 30 P

 31 q

 32 r

 33 S

 34 t

 35 U

 36 u

 37 Y

7 Segment Control

B10000000 – B11111111

When bit 7 = 1, the other bits

control each of the 7 segments

 7-1 6-A 5-B 4-C 3-D 2-E 1-F 0-G

47

10 Digit Display Example Code

 MOVVA $F8 / Initialize display

 WRITOD 0 A

 MOVVA $FF / Turn display on

 WRITOD 0 A

MOVVA #$81 / Set display character index to 1

 WRITOD 0 A

 MOVVA #D0 / 0 displayed in character #1 position

 WRITOD 0 A

 MOVVA #D34 / : displayed in character #2 position

 WRITOD 0 A

 MOVVA #D1 / 1 displayed in character #3 position

 WRITOD 0 A

 MOVVA $EE / Displays “Error”

 WRITOD 0 A

A sample code file for this module is available in the install file and is written for
Output Device 0. It also uses the Keypad module on Input Device 0.

WIF Clock.asm

A calculator program and Number Guess game also use this module.

WIF Calculator.asm
WIF NumberHunt.asm

Note: These programs are for WIF mode

48

Alphanumeric Display Module

Only one alphanumeric display module can be used.

This display module emulates a 2 line by16 digit coloured alphanumeric display.

Menu Items

Accessed by right clicking the Alphanumeric Display module.

Reset Resets the Alphanumeric Display module

Disconnect Disconnect the Alphanumeric Display module

When the display module is connected, the Ready line will be pulled LOW so display
data can be sent at any time.

Character Set

ASCII characters 32 (space) to 127 (tilde) can be used with this display module.

Control Codes

$00..$0F Set Character index

$10..$13 Set new character colour – red green yellow blue

$80 Initialize display *

$81 Clear all display

$82 Clear display line 1 *

$83 Clear display line 2 *

$84 Select top line for data input *

$85 Select bottom line for data input *

$86 Turn display OFF

$87 Turn display ON

 * => character index = 0

All other data is ignored by the module.
The character index is incremented each time a new character is sent.
Some characters and codes have default assembler constants defined.

The Alphanumeric Display module can be moved around by left clicking the module
above the switches and dragging it.

49

Alphanumeric Display Code Examples.

movva AL_INI / initialize display

 WRITOD DEV0 A

 movva AL_ON / turn display on

 WRITOD DEV0 A

 movva AL_TLN / select top line for data input

 WRITOD DEV0 A

 movva AL_GRN / new characters are green digits

 WRITOD DEV0 A

 movva #A”A” / write ASCII ‘A’ to digit 1, top line

 WRITOD DEV0 A

 movva #A”B” / write ASCII ‘B’ to digit 2, top line

 WRITOD DEV0 A

 movva AL_BLN / select bottom line for data input

 WRITOD DEV0 A

 movva AL_BLU / blue digits

 WRITOD DEV0 A

 movva #A”C” / write ASCII ‘C’ to digit 1, top line

 WRITOD DEV0 A

 movva #A”D” / write ASCII ‘D’ to digit 1, top line

 WRITOD DEV0 A

 movva AL_YEL / yellow digit

 WRITOD DEV0 A

 movva #A”E” / write ASCII ‘E’ to digit 2, top line

 WRITOD DEV0 A

See the assembler file wif 21.asm for an example using this display.

Note: This program is for WIF mode

50

Switch Functions

Some switches on the EDUC-8 project front panel can be used for different
functions.

These functions can also be accessed through the USB Interface.

Note: For clarity, the emulator switches are shown.

Set / Clear Mode Flags (SW7 not used, SW4 must be 0).

 Function Select 0 Unused

 SW6 SW5 SW4
 0 0 0 Set Normal or WIF operation
 0 1 0 Set / Clear Slow Exam Deposit Mode (SED)
 1 0 0 Set T1 or T13 Reset
 1 1 0 Set / Clear Zero Page Mode (ZPM)

Note: T1 T13 becomes Before Output (BO) and After Output (AO) for WIF mode.
 SED and ZPM are not available if WIF mode is active
 Changing between Normal and WIF modes resets program memory.

To execute the function press and hold HALT down, the press and release LA, then
release HALT.

 (Normal)

 (1)

 (2)

 (3)

 (4)

On successful completion, the PC register LED [0] will flash once.

51

For example, to enable Slow Deposit Mode, set the switches as shown, and then
execute the LA and HALT switch procedure shown above.

 A 01 0 A = Set (1) Clear (0)

Set Normal Operation Set WIF operation

Set T13 (or WIF AO) Set T1 (or WIF BO)

Set Normal Mode Set Page Zero Mode

Loading and Saving Programs (SW4 must be 1).

Programs can also be loaded and saved via the front panel switches if a program is
not running already.

There is storage available for 8 EDUC-8 programs and numbered 0 – 7.
There is storage available for 3 WIF programs and numbered 0 – 2.

 LS Mode 1 Address

SW7 LS Load = 1 Save = 0
SW6 Mode EDUC-8 = 1 WIF = 0
SW5 Not Used
SW4 1
Address EDUC-8 SW2 SW1 SW0 (0 – 7)

WIF SW1 SW0 (0 – 2) (3 selects address 0)

Use the HALT LA switch procedure shown above to read/write the program

52

Examples

Load EDUC-8 Program #2

Save EDUC-8 Program #7

Load WIF Program #0

Save WIF program #1

Some configuration information is saved with each program and is based on the
current operational modes.

Valid Program is valid or not valid

ZPM Zero Page Mode

SED Slow Exam Deposit Mode

T1T13 IO Reset T1, T13 (BO, AO)

This information is recalled when loading a program and the current operation
modes are set to these values.

 If the selected operation is successful, then the PC register LED [0] will flash
once.

 If the selected program for loading is not valid, then the PC register LED [0]
will flash continuously.

 If external storage EEPROM access fails, then the PC register LEDs [7] and
[0] will flash continuously.

To clear the error, press the LA switch

53

EDUC-8 Project - Circuit Description

The circuit for the EDUC-8 emulator is fairly simple thanks to the PIC18F47K40
microcontroller. This particular chip is easily capable of driving the project and in fact
a lot of its features are not used. The main reason for using it is because it is quite
cheap. If it is mounted in an optional 40 pin IC socket, then it can also be
reprogrammed and used for other projects if required.

The PIC clock source is internal and therefore no external crystal oscillator is
required.

The contents of various EDUC-8 registers are displayed using 3mm red LEDs. To
keep the project IC count to a minimum, the LEDs are driven in a multiplexed
manner and have current limiting set by the series 680R resistors. This value was
chosen in case the PIC freezes for an unknown reason then the maximum current
through the LEDs that are turned on is limited.

The LEDs are arranged in 8 rows by 6 columns and driven by 2 of the PIC ports.
PortD drives the rows of LED anodes, while PortA, RA0-RA5 sequentially drive the
columns of LED cathodes. The display will not mimic the exact operation of the
original EDUC-8 because they are driven in a multiplexed manner and not directly as
in the original project. The refresh rate for each column is about 4mS and was
chosen because the multiplexing of the LEDs can give an odd display appearance
when running in fast mode.

The switches are also multiplexed with the LEDs and make use of the PIC ports
capability of changing from inputs to outputs and vice versa. The switches are
arranged as a matrix of 8 rows by 2 columns. As there are only 15 switches required,
the second column only has 7 switches. To stop each switch from interfering with
another, they are all isolated by diodes. If the diodes were omitted, then the PIC with
its multiplexed method of operation would not be able to determine which switch
contact was closed and they would also interfere with the LED display.

The switch rows are connected to the same LED rows that are controlled by PortD.
The switch columns are controlled by PORTE pins RE0 and RE1.

During normal LED operation, all the PortD pins are set as outputs. Pins RE0 and
RE1 are set as inputs and these therefore have no effect on the LEDs. It is possible
at this stage that all of the switches could be in an open state which could leave RE0
and RE1 floating. To stop this happening, the PIC has internal pull-ups enabled on
these 2 pins and only work when the pins are set as inputs.

The PIC scans the switch rows at approximate intervals of 25mS also which serves
as a switch debounce period.

When a switch read is required, all of PortD is set to Logic 0 to discharge the pins.
These pins are then reconfigured as inputs and all of the LED cathode rows are set
to 5 volts to make sure no LEDs can light.

54

PortE pin RE0 is then configured to be a low output, thus driving the corresponding
switch column low. In this configuration, the state of switches SW1 – SW7 can be
read into the PIC via PortD. PortD also has internal pull-ups enabled when set as
inputs, so any open switches keep the corresponding PortD pin high, while switches
that are closed will cause the corresponding PortD pin to go low.

After a small delay, RE0 is set back to an input with pull-ups enabled and RE1 is set
to a low output. This enables the remaining switches SW8 – SW15 to be read in the
same manner.

The real EDUC-8 input port Dev0 as well as being serial, also has provision to
connect to the SR<7:0> switches. In the PIC circuit, directly connecting the switches
like this won’t work due to the multiplexing arrangement, so these inputs which
appear via connector CN7 are buffered by a 74HC244 octal buffer/line driver chip.

After reading the column of switches via RE1, the PIC sets RE1 to be an input again.
It then sets RE2 to a low output. This pin is connected to the G1 and G2 inputs to the
74HC244 chip which changes the outputs from high impedance to match the state of
its inputs.

These outputs now form another diode isolated switch column for the PIC to read via
PortD. Once read, RE2 is set high to change the 74HC244 chip outputs back into a
high impedance state. After this, the PortD pins are reconfigured as outputs and the
LED operation continues until the next switch scan is required.

As it is possible for the inputs to the 74HC244 to be left unconnected, a 10K SIP
resistor package (RP1) is used as pull-ups for these pins.

The real EDUC-8 input port Dev0 also has connections for the Load Address and
Deposit switches.

These parallel inputs are available on pins 19 and 17 on connector CN7 and are
connected to PIC pins RB7 and RB6. R19 and R18 serve as pull-up resistors for
these two pins if left unconnected.

A jumper arrangement is used via CN3 for PIC pins RB6 and RB7. If required, these
pins can also be used for PIC In Circuit Serial Programming (ICSP) via connector
CN1. These are used just in case the external LA and DP inputs are inadvertently
connected to something during programming.

As in the real EDUC-8, the PIC code ANDs the external and front panel SR<7:0>
switches together, as well as the external and LA and DEP switches. Therefore to
read any of the external switches, the corresponding front panel switches should all
be at a logic 1 as is mentioned in the original articles. Momentary switches LA and
DEP are normally logic 1.

In the real EDUC-8, the external drivers for these inputs are required to be open
collector types, but in the PIC circuit these inputs can be driven high or low.

55

U2 is a 74HC139 dual 2 to 4 line decoder/de-multiplexer and is used because of the
limited pin count on the PIC. Its function is to control some of the output pins for
Dev0 and Dev1. The SELA and SELB pins are connected together and are driven by
PIC pins RB0 and RB1. These two pins select one of the four active outputs from
each de-multiplexer so in this configuration, the same outputs are selected.

The four outputs from U2(A) effectively steer the clock pulses to each of the Dev0
and Dev1 inputs and outputs. The four outputs from U2(B) do the same for the
device resets for each of the inputs and outputs. As one output will always be active
from the decoder chip, the PIC makes sure that these remain in a high state when
not used. Inactive outputs from U2 revert to a logic high state which is the default for
the input/output devices.

All input or output device inputs connect directly to the PIC pins via the input/output
connectors CN4 – CN7. If unconnected, these PIC pins go high via pull-up resistors
R10 – R15.

U1 is a I2C serial EEPROM chip with 8K by 8 bit memory available. It has the
capacity to store up to 8 programs for the EDUC-8, plus an additional 3 programs for
WIF mode. It can be accessed by the front panel switches or via the USB PC
interface. R16 is used as a pull-up for the SDA pin.

C1, C2, C3 and C5 are used as decoupling capacitors for each of the chips while C4
is used as a small tank capacitor for the PIC.

R9 is used as a pull-up for the PIC master clear (MCLR) pin and holds it high in
normal operation. When PC communications are connected via the USB to Serial
module, this pin is controlled by the DTR pin under PC control.

Power for the EDUC-8 board is provided via USB connector CN1. If the
recommended USB to Serial module is inserted then power is supplied via the PC. A
suitable connector can be made up to supply a regulated 5V supply if other power
sources are required. Pin 4 is VCC and pin 6 is GND. 4.5 volts from 3 AA cells could
also be used.

Be careful with polarity or serious damage could result. All of the chips should work
with a supply of around 4 – 5V. Do not attempt to use the serial convertor connected
to the PC and an external supply.

The PIC master reset (MCLR) is connected to pin 1 and is usually controlled by the
PC, but can be controlled externally by pulling the input low. It is held high by resistor
R9.

*With the PIC running on its own internal oscillator, the internal UART error is
specified as 0.16%. This in itself is not a problem, and even though the PICs internal
timer is laser trimmed for accuracy, temperature effects may still affect this timing
slightly. As such the serial communication “packets” are kept short so that only a few
bytes are sent at a time.

56

EDUC-8 Project – Construction

Please check the PCB for damage and read through these notes before starting
construction. The four PCB mounting holes may need to be enlarged if you decide to
mount the project in the plastic enclosure.

It is easy to construct this project if you have a small bench top vice to hold the PCB
while soldering the project parts. There are some PCB overlay diagrams immediately
following this section to help with construction.

The parts look neat if they are placed properly, but there is no need to be perfect. It
is important not to overheat these small parts.

Start with soldering the surface mount components on the top side of the PCB. Try to
solder only one part type at a time, eg 10K resistors. The solder pads for all SMT
components have been enlarged slightly to make construction easier. An easy
method of soldering these parts is as follows.

Melt a small pool of solder onto a single PCB pad of all the SMT parts. For example,
resistors have two to pads to solder, so only melt a solder pool for one pad and leave
the other PCB pad clean.

Place the SMT components on the PCB and (as usual) they will probably land
upside down. Tip them all over so that the label is facing upward. It is nice to have all
the labels oriented in the same direction.

Assuming a right handed constructor, with some tweezers, move the component to
the PCB pads with your left hand. Place the soldering iron tip in the centre of the
solder pool to melt it again and immediately slide the component to the right until it
butts up against the soldering iron tip. The component should be in the correct place.
You may need to rub the soldering iron up and down the edge of the component to
get the solder to bond. Remove the soldering iron and hold the component for a few
seconds until the solder cools. Repeat this procedure for all other SMT components
for this side of the board.

Take care when mounting the diodes to make sure they are oriented correctly. The
cathodes are marked with a black line and they match up with the heavier lines on
the solder mask. Once all parts are mounted, you can go around and solder the
opposite PCB pads for all components. After this recheck your work.

57

When you are satisfied with the top of the PCB, you can mount the SMT components
for the bottom side in the same manner. Some components are placed close
together and there is not much room remaining for solder mask component values.
These are mostly the 680R resistors and diodes.

Please note: At this stage, the 24LC64 memory chip may remain off the board.

The 3mm red LEDs can be mounted next. The leads need to be cut as follows.

To make it easy to cut the leads and mount the LEDs onto the PCB, if you like you
can make up a small holding jig. The one shown in the diagram was made out of
balsa wood, but can be anything that is convenient. A hole was drilled into one end
with a 7/64” drill. The 3mm LEDs fit snugly into this diameter hole.

One end was marked to match with the cathode of each LED, which has a flat edge
moulded into the side of the LED package.

Using a similar procedure to mounting the SMT components, place a pool of solder
onto 1 pad of each LED on the top of the PCB. All LEDs have the cathode (flat
surface) towards the switches.

Starting at one end of the PCB, using the tool, align and hold the LED on the top of
the solder pool. Melt the solder pool and the LED will drop down to the PCB surface.
Remove the soldering iron and let the solder cool. The LEDs have short leads and
can be damaged by too much heat so be careful. Removing a defective LED later on
will be difficult. Complete an entire row of 12 LEDs using this method. Once
complete, check the orientation again and solder the other leads.

You can use the tool to align each LED vertically.

10mm

Cathode

58

Mount the 10K SIP resistor (RP1) next as shown. Observe the polarity as the
component has a common pin marked with a dot. This pin should be closest to L1.

The switches can be mounted next. There are 2 types. There are 10 switches that
are normal toggle types and 5 switches that are momentary types. The following
diagram shows the normal toggle types mounted.

The 5 momentary type can be mounted in the remaining positions. If all of these
switches are mounted so that the levers point towards the LEDs, they will be in the
correct orientation.

Note: The PCB has provision for the larger C&K type toggle switches if the

miniature ones cannot be purchased.

U2, a 74HC139 can be mounted next. Solder the power supply pins first. Check
orientation and solder the remaining pins.

There are now static sensitive components on the PCB, so please
handle it with due care. Holding the PCB by the edges helps.

This completes the top side PCB construction.

Dot

59

All of the IDC connectors on the bottom side of the PCB can be mounted next. CN1
and CN2 are female 6 pin connectors. The others are all male.

If required, a 40 pin IC socket can be mounted for the PIC18F47K40 chip. The
socket needs to have all its pins bent outward at 90 degrees so that it becomes a
surface mount socket. Align the socket and solder 1 corner pin. Check alignment and
solder the opposite corner pin. If satisfied with the positioning, solder all the other
pins.

If the PIC chip is to be mounted directly to the PCB, then all the pins need to be bent
inwards before soldering. (See mounting the 74HC244 chip later in text)

U3, a 74HC244 chip, needs the pins bent inwards so that it can be mounted as a
surface mount part. The component can be held carefully by its ends with the pins
rested on a hard surface at about 45 degrees. Then press gently downwards and all
the pins will bend inwards where the pins narrow. Do the same to the other side. You
may have to lay the component flat on a hard surface and press gently down to
complete the 90 degree bends all at once.

Position the part, which will be slippery on the PCB, and solder the power supply
pins first. Check orientation and solder the remaining pins.

Mount the 24LC64 memory chip next. The pins are small so care is required. Use
the same technique as described previously by placing a small solder pool on one of
the pads on the PCB, then solder that single pin while holding the part with tweezers.
Then solder the remaining pins.

Place the 2 jumper shunts in the positions shown for normal operation. One shorts
pins 2 and 3 and the other shorts pins 5 and 6.

This completes the board construction.

If a PIC programmer is available, then the PIC18F47K40 can be programmed using

the HEX file educPIC.hex available in the installation files.

Once programmed, the PIC can be inserted into its socket. Pin 1 is closest to the 3
10 pin IO sockets. See ISCP Programming.

Note: If the PCB cannot be purchased, there are Gerber files which can be used by
 a PCB manufacturer to create the board.

 See installation/schematics/gerber directory – educ8.zip

60

EDUC-8 Project – Case Assembly

The enclosure chosen for this project is available from Altronics – Part No. H0290.

The inside of the case needs to be machined out so that the PCB can fit comfortable
inside. There are walls and support areas for the battery which need to be removed
as well. The PCB will sit about 10mm above the case bottom.

An easy way to accomplish this is to use a Dremmel Tool (Part 196) which comes in
packs of 2. It is easiest if the tool is placed in a bench drill so that the case can be
held and manoeuvred by hand while the excess plastic is removed. Time and care
should be taken as trying to remove too much plastic in one “bite” may cause the tool
to dig in and fling the case out of your hand or damage it. Moving the tool up and
down is best. Moving the case sideways to remove plastic may cause the tool to bite
in.

The battery enclosure door can be glued in place using araldite or other plastic glue.

If you decide to use this enclosure, there is a PDF file available in the installation sub

directory, ../Schematics that can be used as templates for the front and back

panels. If you print this file with 100% scaling, the templates should match the PCB
and case dimensions.

Front_Back_PanelsTemplate.PDF

The marked holes are alignment holes. If you cut out the front panel template and
fasten it centrally onto the front panel of the case with sticky tape. You can then drill
2 x 1/16” holes completely through the front and back case panels using the
template as a guide. The back panel template can then be aligned to these holes.

61

Start with the front panel.

Use a scriber point to push down (not too hard) though each corner of the square
holes and in the centre of each switch. This procedure will leave a small indent on
the plastic face panel when the paper template is removed. Use the scriber to join up
the 4 sides of each hole on the plastic surface.

The holes can be cut out by drilling 3/16” holes along the inner sides of the lines,
making sure the drill does not protrude to the outer side of the lines. Once the inner
plastic is removed, use small files to square up the holes. It is not imperative that the
holes be perfectly square as the front panel artwork should cover them to a certain
degree.

The switch holes can be drilled next. Drilling one large hole can cause the drill bit to
bite and tear the plastic, especially if the drill is sharp. Start will smaller drills, say
1/8” and progressively drill larger holes up to 13/64”.

Use a similar procedure for the rear panel holes.

62

There are 4 standoffs moulded into the inside of the upper casing to allow mounting
of a smaller PCB. These need to be removed using the Dremmel tool taking care not
to go right through the case.

One the case halves are all completed, the four 10mm spacers can be attached to
the rear of the PCB with the M3 screws. The mounting holes in the PCB will need to
be enlarged with a 1/8th inch drill.

The back panel can either be drilled to mount the PCB spacer or you can use 5
minute Araldite glue to attach the spacers to the inside of the back case wall. Place
the glue at the approximate positions for the spacers then place the PCB into the
back case and attach the front case half to allow the switches to align the PCB.

Make sure the PCB is sitting in the correct position and let the glue set for at least a
few hours, or overnight. More glue might need to be added when the PCB is
removed to strengthen the mounts.

The front panel artwork for the prototype was printed onto a sheet of clear
transparency with an inkjet printer. The artwork is a reversed image so that it will
appear normal when the sheet is flipped over.

The artwork is contained in a file called EDUC8_FACES.pdf and is available in the

installation directory. After printing and drying, these images can be trimmed to fit the
top enclosure face. It is difficult to create neat holes for the switches to poke through,
so the artwork was trimmed to sit just above the switches.

The prototype had 4 small holes drilled into the corners of the top enclosure half to
accept small self tapper screws. Two slightly larger holes were punched into the
overlay sheet matching the top two hole positions. This has to be done carefully as
the sheet can tear. I used a hole punch and hammer with the sheet on a hard
surface. Use the self tapping screws to lightly secure the sheet to the front panel.
The bottom 2 screws are there just to balance the appearance. This method allows
easy changing of the panel artwork for the two operating modes and of course, any
other suitable method will do.

Once the enclosure modifications are completed, it can be stripped down again. The
top face edges can be masked with tape and then the inner area sprayed with gold
coloured paint. The overlay will show up nicely with this colour. Leave it to dry for
some time before final assembly.

Once the paint is dry, some red plastic sheet can be taped on the inside of the top
casing to provide a sealed window for the LEDs.

There is a file called deviceLabels.pdf that has some text that you can use to

make up some labelling for the rear panel. These were printed, cut to size and stuck
to the rear case wall with some clear nail polish.

63

Completed Front Panel

Completed Rear panel

Working EDUC-8 with 2 completed modules

64

65

66

67

Device Interface Circuit

This circuit provides an experimenters interface to the EDUC-8 IO ports. The circuit board details are available as a Gerber file which can

be sent to PCB manufacturer to make these boards. See installation/schematics/gerber directory – device.zip

68

LED Module Circuit

This circuit demonstrates a connection to an output port. The module assumes you know something about programming a PICmicro in

assembler. There is a source code file called LEDmodule.asm available to control this module in the installation/PIC directory.

The compiled HEX code is also available and is called LEDmodule.hex. The PIC16F18345 was chosen as it has plenty of memory and

peripherals and is quite cheap. It can also be used for other projects as desired.

Sample programs for the EDUC-8 in both normal and WIF modes are available in files EDUC8_LED.asm and WIF_LED.asm.

Note: You can use ICSP to program the PIC by wiring up a simple circuit on a breadboard.

Increase
Delay Dec Oct Hex Oct
 377 737

MODE A B 0 = Open

DEC 0 0 1 = Closed

HEX 0 1

377 1 0

737 1 1

Trimpot VR1 is used to control the delay the
EDUC-8 program uses to update the LED display.
Increasing the voltage at the wiper, will increase
the delay.

69

Key Module Circuit

This circuit demonstrates a connection to an input port.

There is a PICmicro source code file called KEYmodule.asm available for this project in the installation/PIC files. The complied HEX

code is also available and is called KEYmodule.hex.

Sample programs for the EDUC-8 in both normal and WIF mode are available as EDUC8_BasicKeypad.asm and

WIF_BasicKeypad.asm.

 [D] key toggles data bit 5

70

EDUC-8 Project Parts List

Part Used Part Type Designators Element14 Part

--

1 1 PCB EDUC-8

2 1 24LC64 U1 1700992

3 1 74HC139 U2 9591117

4 1 PIC18F47K40 U3 2564267

5 1 74HC244 U4 1470753

6 10 SPDT 2MS1T2B2M2RE* SW5 SW7 SW8 SW9 SW10 SW11 9472967

 SW12 SW13 SW14 SW15

7 5 SPDT (Mom) 2MS2T2B2M2RE* SW1 SW2 SW3 SW4 SW6 9472983

8 23 LS4148 D1 - D23 SOD-80 9549994

 or 23 1N4148 D1 - D23 SOD123 2433353

9 48 3mm RED LED L1 – L48 1581113

10 1 4.7Uf TANTALUM C4 1206 1672491

11 4 100nF CERAMIC C1 C2 C3 C5 1206 2497075

12 8 680R RESISTOR R1 – R8 1206 2671204

13 12 10K RESISTOR 1/8W 5% R9 – R20 1206 1632523

14 1 10K X 8 SIP RESISTOR RP1 1612533

15 2 2.54mm HEADER SOCKET 6x1 CN1 CN2 1593462

16 1 2.54mm HEADER 6x1 CN3 1593415

17 3 2.54mm HEADER 5x2 CN4 CN5 CN6 1593442

18 1 2.54mm HEADER 10x2 CN7 1918006

 or 2 2.54mm HEADER 5x2 CN7 (Same as part 17) 1593442

19 1 40 pin IC SOCKET 4285669

20 2 JUMPER SHUNT 1632170

21 1 CASE ALTRONICS H 0290

22 1 FTDI USB/SERIAL MODULE JAYCAR XC4464

 or 1 FTDI USB Breakout ALTRONICS Z6225 (Cheaper)

 or (See Ebay: Real cheap)

23 4 METAL THREADED SPACERS JAYCAR HP0900 1466761

24 4 M3 x 6mm SCREWS JAYCAR HP0400 2494538

25 1 RED PLASTIC FILM Ebay

 FRONT PANEL ARTWORK Home print

 BACK PANEL LABELS Home print

* Larger C&K type switches are catered for on the PCB design.

71

Basic Project Module Parts List
Part Used Part Type Designators Element14 Part

--

1 1 PCB Serial Module

2 1 PIC16F18345 DIP U1 2474834

3 1 100N MKT Capacitor C1 211275102

4 1 2.54mm HEADER 5x2 or CN1 1918006

 1 2x5 IDC Transition Connector CN1

5 1 20 Pin IC Socket (Optional) 4285608

6 1 10 way IDC cable 150mm 2217607

Cable length to suit user but not too long or capacitive effects may upset signals

LED Module Extra Parts List
Part Used Part Type Designators

--

1 1 3 Digit 7 Segment Display LD1 2627649

2 8 680R Resistor 1/8W 5% R1-R8 1128121

3 2 1K Resistor 1/8W 5% R9-R10 1128859

4 1 5K Trimpot VR1 2859737

5 2 2.54mm HEADER 3x1 A-B 1593412

 or 1 2.54mm HEADER 6x1 A-B 1593415

6 2 JUMPER SHUNT 1632170

KeyPad Module Extra Parts List
Part Used Part Type Designators

--

1 1 5mm Red LED L1 2322131

2 1 680R Resistor 1/8W 5% R1 1128121

3 1 4 x 4 Keypad KP1 Altronics S5383

72

USB Interface

The USB interface allows you to communicate with the EDUC-8 hardware project via
the PC USB Port.

The interface is accessed by the menu item [EDUC-8 via USB] after right clicking on
the EDUC-8 emulator.

It is important to note that the Interface Window should not be opened or closed
unless the hardware is connected to the PC user port, otherwise the PC may hang
while it tries to sort out why the USB device has changed state.

The interface unit is a commonly available USB to Serial
Converter which can be purchased from many electronic
hobbyist outlets. Full instructions and a USB cable are
provided with the unit.

Note:

As well as providing communications to and from the PC,
this unit also powers the EDUC-8 project. Make sure the
interface board switch is to set for 5V Rx/Tx operation
before use with the EDUC-8 project.

The interface board may be damaged by static electricity.

Please handle the board only by its edges.

This module can also be used for other projects if required.

Initial Setting Up

Connect the interface board to a free PC USB port and the board should work
properly but if there are problems visit http://www.ftdichip.com/ for more details on
their drivers.

You need to know the COM port being used for the device.

This can be accessed from the Control
Panel – Hardware and Sound – Device
Manager – Ports (COM & LPT) – USB
Serial Port (COMx) where x should be
set to a value between 1 and 256.

To do this, double click the USB Serial
Port entry to open the Property Viewer,
click the Port Settings Tab and then
click Advanced. You will see a COM
Port drop down list where you can set
the port number to one of the values
described above.

http://www.ftdichip.com/

73

Close all Control Panel windows by clicking on OK.

Disconnect the USB interface from the PC.

Connect the USB interface to the EDUC-8 board USB connector. This is the 6 pin
socket located nearest to the Dev 0 Parallel Input socket. The USB interface board
should have its components facing towards the PCB top as shown in the picture
below.

Connect the USB interface to the PC. On initial connection to USB port, the EDUC-8
may flicker while the PC stabilises the port, but once connected, the EDUC-8 should
start to run and the Fetch LED should stay lit.

Run the EDUC8uc.exe program

Right click the computer and select the menu item [EDUC-8 via USB] or press F5.

The Interface Window should open.

If the correct COM Port number was entered, the PC will establish communications
with the EDUC-8 project and text similar to below will appear in the list window.

EDUC-8 connection query... >OK

Operating Mode = Normal

Page Zero Mode = OFF

Slow Deposit/Examine Mode = OFF

T1/T13 Reset Mode = T13

Slow Speed Cycle Time = 500mS Default

Clear registers on reset = ON

The text shows that the connection was established and lists the state of the various
operating options.

If an error message appears then you may need to set the correct USB port.

To do this, click on the COM Port radio button and enter the same COM Port number
that was set from the Control Panel procedure outlined above.

Once entered, press the ENTER key on the PC keyboard.

The Interface screen allows the user to transfer the memory and programs as well as
se or interrogate the various user options.

It also has the ability to upgrade the firmware inside the PIC microcontroller on the
EDUC-8 board should this become necessary.

74

To send data to the EDUC-8 board, use the Write button.

To get data from the EDUC-8 board, use the Read button.

Interface Functions

Note: “Project” refers to the EDUC-8 hardware project.
 “Emulator” refers to the EDUC-8 PC emulator.
 “Storage” refers to the external memory chip on the EDUC-8 project board

 Program Transfers

Memory

Operating Options

Upgrade Driver

COM Port

 Reset

 Clear

 Problems

Program Transfers

Programs can be transferred to and from the PC and project

Directory

This option will list or erase the programs currently stored in the project memory.

Read Lists the stored programs in the view window.
 8 programs are for EDUC-8 mode, and 3 are for WIF mode.
 The options that are stored with each program are also listed.

No Name Pgm Typ ZPM SED IO

 1 EDUC8 Kit Display Valid ED8 OFF OFF T13

 2 No Name Empty ED8 OFF OFF T13

 3 No Name Empty ED8 OFF OFF T13

 4 No Name Empty ED8 OFF OFF T13

 5 No Name Empty ED8 OFF OFF T13

 6 No Name Empty ED8 OFF OFF T13

 7 No Name Empty ED8 OFF OFF T13

 8 No Name Empty ED8 OFF OFF T13

 1 WIF Kit Display Valid WIF --- --- AO

 2 No Name Empty WIF --- --- AO

 3 No Name Empty WIF --- --- AO

Erase Opens a window to select the programs to delete.

Programs

Select EDUC8 or WIF program type for access.

75

Read Transfers to selected program to the PC.
 You can then choose to view the program as disassembled text,
 transfer it to the PC memory, or save it to a file as disassembled text.
 If the PC operating mode does not match the stored program,
 Ie. Normal or WIF mode, then you will be prompted to change modes.

Write Transfers the PC program memory to the project memory storage.
 You will be prompted for a program name before the transfer starts.
 Program options will also be transferred including, the program type,
 ZPM mode, SED mode and the T1/T13 (BO/AO) reset mode.

Erase Delete the selected program.

Memory Write/Read

This option allows access to the project memory.

The Write process sends either the current PC Emulator memory to the
Project memory, or you can fill the Project memory with a value (0 – 255).

The Read process reads the project memory into a PC buffer.

 When the read process finishes you will have four options for the data.

 List it disassembled on screen
 Send it to the PC Emulator memory
 Save it as a disassembled text file
 Discard it.

 During the Read/Write process, the project operating options are
 synchronised with the EDUC-8 options so that Normal or WIF operating
 modes match the transferred program.

 The Erase process will clear all memory to zero.

Operating Options Write/Read

 This option accesses the Project operating options.

 Normal / WIF mode

 Select the operational mode of the project.

 Output reset cycle

76

The EDUC-8 can send an output device reset pulse on either the T1 or T13
cycle. This option tells the PIC code which of these cycles the reset should
occur.

 Zero Page Mode – EDUC-8 only

 A hardware modification was done to allow Zero page mode addressing.
 This option will enable or disable that mode of operation.
 This option is not available for WIF mode.

 See Zero Page explanation

 Slow Examine/Deposit Mode – EDUC-8 only

In normal EDUC-8 operation, the computer will start Run mode if either the
Deposit or Examine switches are initiated when Slow running is selected. This
can be annoying at times so you can enable Fetch or Examine in slow mode
by enabling this item.

 This option is not available for WIF mode.

 Slow speed cycle time

This options give 4 speed choices for the Project slow cycle timing.

 125mS
 250mS
 500mS (Default)
 1 second

 Clear memory to 0 on reset

This options will clear memory registers to zero on a reset.

Note: If the Zero Page Mode and or the T1/T13 (BO/AO) flags are changed, the
 current program may not work as expected.

Upgrade Driver Write

 This option will reprogram the PIC’s operating code if the firmware needs to
 be upgraded.

This updated code will be made available from the project author from the
EDUC-8 Emulator website if required.

This HEX code file should be downloaded and stored in the same directory as
the EDUC-8 Emulator.

77

When this option is activated, the HEX file will be loaded, checked and then it
will be transferred to the PIC so that it can reprogram itself.

It is important not to interrupt this process once it has started or the PIC may
not function properly after a reset.

It is possible that the reprogramming process gets interrupted for a variety of
reasons and if this happens the PIC will need to be reprogrammed from a
dedicated PIC programmer such as a PICkit3 or similar.

The circuit board for the EDUC-8 project has a port that will allow ICSP
connection to a PICkit3 programmer.

COM Port [Enter]

Enter a Serial COM Port value.

This value must be in the range 1 to 256.

Press ENTER to change the COM Port.

Press ESC to exit this mode without changing the port.

Reset

 This button will force a full reset of the PIC Microcontroller.
 The PC will then try to re-establish communications with the EDUC-8 board.

Clear
 This button will clear the contents of the list window.

78

Problems

A situation could arise that the PIC firmware or reprogramming has failed for some
reason and will not connect properly to the PC via the USB port. If this happens, you
may not be able to reprogram the PIC firmware by using the Upgrade Driver option.

Even though the firmware has failed, it is still possible that the internal
reprogramming code section, called the “Bootloader”, is still intact.

To see if this is still active, follow the procedure below.

1. Make sure the EDUC-8 is connected to the PC USB port
2. Make sure the EDUC-8 PC Emulator program is running
3. Open the USB Interface Window
4. Verify that a “Communications Failed” message appears
5. Hold the project [Load Address] switch [DOWN]
6. Press and release the [Reset] button from the Interface Window
7. Release the project [Load Address] switch
8. The following message will appear if the Bootloader is active

The EDUC-8 board is operating in Forced Boot Mode

The only functions that will work is to reprogram

the EDUC-8 hardware driver and to do a Reset

9. Select [Upgrade Driver] and press the [Write] button to try and reprogram the PIC

firmware

If this procedure fails, then a PIC programmer will be required to reprogram the
firmware. See ICSP.

79

PIC SERIAL COMMINCATIONS PROTOCOL

Serial setup: 19200 BAUD 8N1

Data bytes expressed as HEXADECIMAL, Eg $FF

“PIC -> Loop” means PIC will resume its normal code execution

Pgm# means a stored program number in the range 0 - 31

PIC RESET – DTR controls PIC MCLR pin

RST1 DTR LOW

RST2 10mS Delay

RST3 DTR HIGH

TEST FOR PIC CONNECTION

 PC SENDS PIC RETURNS

TPC1 $A0 $ED + $E8

PROGRAM INTERNAL ROM

 Current HEX file loaded, 2 bytes per ROM word. (High Low format is not important)

 Data start address = $0x00300 (bytes), any lower will cause a program crash

 Data end address = end of ROM data in HEX file.

 Ignore EEPROM, ID and CONFIG data from HEX file

 Data is padded with $FFFF for total word size (mod 64 = 0)

 PIC program buffer is 128 bytes (64 words)

 The boot loader program initialises itself ready to receive ROM data

 PC SENDS PIC RETURNS

PIR1 $A1 $A1 / Jump to boot loader

PIR2 $02, Data+0, Data+1 $02 / Transfer next 2 data words (4 bytes)

 Data+2, Data+3 / Data format is LOW byte HIGH byte

 Continue PIR2 until 64 words (128 bytes) have been sent

PIR3 $03 / Initiate PIC ROM write

 $F3 / Internal write not required (same data in ROM)

 $03 / Internal write completed

 If more ROM data, continue from PIR2

 If no more ROM data, do a PIC MCLR reset to start new code

READ or WRITE Memory - EDUC-8 = up to 256 bytes

 WIF = up to 1024 Words HL (2048 bytes) (2 words per xfer)

WRITE EDUC-8 MEMORY

 PC SENDS PIC RETURNS

WEM1 $A2 $A2 / Initiate EDUC-8 memory write

WEM2 If next byte available

 EDUC-8 Mode

 Byte $A4 / while data available

 WIF Mode

 H0 L0 H1 L1 $A4 / 2 words) while data available

 Continue from WEM2

 Else

 $56 $56 / PIC -> Loop

READ EDUC-8 MEMORY

 Storage is required for 256 bytes

 PC SENDS PIC RETURNS

REM1 $A3 $A3 / Initiate EDUC-8 memory read

 EDUC-8 Mode

REM2 $52 $52, B0, B1, B2, B3 / Read next 4 bytes

 If data count < 256 bytes then continue from REM2

 WIF MODE

REM2 $52 $52, H0, L0, H2, L2 / Read next 2 words

 If data count < 1024 words then continue from REM2

REM3 $56 $56 / PIC -> Loop

ERASE EDUC-8 MEMORY

 PC SENDS PIC RETURNS

ERM1 $A4 $A4 / Initiate EDUC-8 memory erase

80

ERM2 $80 $56 / PIC -> Loop

EDUC-8 OPTIONS – 1 BYTE

 Operating Mode bit 0 1 = Normal, 0 = WIF

 Spare bit 1

 Zero Page Mode bit 2 1=OFF 0=ON

 Allow slow exam/deposit bit 3 1=NO 0=YES

 Slow Speed bits 5 4 00=125mS 01=250mS 10=500mS 11=1sec

 T1 T13 Reset bit 6 1=T13 0=T1

 Reset memory to 0 on reset bit 7 1=No, 0=Yes

WRITE OPERATING MODE

 PC SENDS PIC RETURNS

WIE1 $A5 $A5 / Options access

WIE2 $53, Options $53 / PIC -> Loop

READ OPERATING MODE

 PC SENDS PIC RETURNS

RIE1 $A5 $A5 / Options access

RIE2 $52 $52 Options / PIC -> Loop

PROGRAM STORAGE

 EDUC-8 Program Numbers (PN) = 0 – 7 ID = $00 256 bytes each

 WIF Program Numbers (PN) = 0 – 2 ID = $FF 2048 bytes each

 Program Options Bit Type Value

 0 Status Empty = 1 Valid = 0

 1 ZPM mode NORM = 1 ZPM = 0

 2 SED mode NORM = 1 SED = 0

 3 Reset mode T13 (AO) = 1 T1 (BO) = 0

 Program Name (NM) – Data[1] = Program Options

Data [2..24] = 23 name characters

 Program Storage Address, only High Byte required, Low Byte = 0

 - EDUC-8 PSAH = EDUC-8 PN

 - WIF PSAH = 8 + (WIF PN x 8))

READ PROGRAM NAME

 PC SENDS PIC RETURNS

RPD1 $A6 $A6 / Name access

RPD2 $54, PN, ID $54

RPD3 $52 NM[1..4] / next 4 characters in name

 If < 24 characters received, continue RPD3

RPD4 $56 $56 / PIC -> Loop

 Program Options in String[1], Program Name is String[2..24]

WRITE PROGRAM NAME

 PC SENDS PIC RETURNS

WPN1 $A6 $A6 / Name access

WPN2 $54, PN, ID $54

WPN2 $53, NM[I] $53

 If I < 24 characters, continue WPN2, else

WPN3 $56 $56 / PIC -> Loop

READ STORED PROGRAM

 PC SENDS PIC RETURNS

RPG1 $A8 $A8 / Read EEPROM access

RPG2 $50, PSAH $50 / program address

RPG3 $52 $52 + 4 Bytes / next 4 bytes from memory

 For EDUC-8 – read 256 bytes, WIF – read 2048 bytes

 else

RPG4 $56 $56 / PIC -> Loop

WRITE STORED PROGRAM

81

 EEPROM write page size is 32 bytes

 PC SENDS PIC RETURNS

WPG1 $A7 $A7 / Write EEPROM access

WPG2 $54 $51 / initialise write buffer

WPG3 $51, Next 4 bytes $51 / transfer next 4 program bytes

 Repeat WPG3 until 32 bytes sent

WPG4 $53 $53 / write, returned OK

 $58 / write, returned FAIL, PIC -> Loop

 If OK and more bytes to be sent, repeat from WPG2

 else

WPG5 $56 $56 / PIC -> Loop

ERASE STORED PROGRAM

 PGN = Program Number: EDUC-8 programs 0 – 7

 WIF programs 0 – 2

 PC SENDS PIC RETURNS

EPG1 $A9 $A9 / Write EEPROM access

EPG2 $54 $53 / initialise write buffer

EPG3 if EDUC-8

 $53 PGN $00 $53

If WIF

 $53 PGN $FF $53

EPG5 $56 $56 / PIC -> Loop

82

Reprogramming the PIC via ICSP.

Caution: The components used in this project may be damaged by

static electricity. Observe proper handling procedures.

 Prior to ICSP programming, if the PIC chip has code from another

project, erase the chip before ICSP or the code may run and damage
then PIC chip and or EDUC-8 circuit.

 Remove any power sources and disconnect the USB cable if fitted.

The two links in connector CN3 should be moved so that
they connect pins (1 and 2) and pins (4 and 5).

Connector CN2 is used for In Circuit Serial
Programming (ICSP) for the PIC chip, using a
Microchip® PICkit™ 3 programmer.

Pin 1 of the PICkit3 connects to the connector
as shown.

If you are using Microchip’s IPE interface with the programmer, then you need to
configure it first. Click the [Power] button and make sure the [Power Target Circuit
from Tool] item is checked.

This mode requires all operational EDUC-8 LEDs to be off otherwise it may not be
able to supply enough power.

To set this up, see clear memory on reset - Operating Options

Click the [Operate] button. For the “Source” file, click [Browse] and navigate to the
EDUC-8 installation/PIC directory and select “educPIC.hex”.

Click [Connect] and follow the prompts.

Click the [Program] button and when PIC programming is completed, remove the
PICkit3 and replace the links in CN3 so that they connect pins (2 and 3) and (5 and
6).

83

Zero Page Mode

The zero page mode of operation was made available by adding a modification to
the original EDUC-8 circuit.

The idea is that you can have common variables located in the first 8 bytes of page 0
which can be accessed from all memory pages. That way you do not have to waste
memory by adding code to access to them across page boundaries.

The above circuit addition is representative of the following logic function.

F.T23.MB3=0.(AND TAD ISZ DCA JMS.MB4)

For zero page access to work:

 the condition is sampled on cycle T23

 bit 3 of the address nibble must be zero, (ie. Only lower 8 addresses)

 the instruction has to be AND TAD ISZ DCA or JMS

 if JMS then bit 4 of the instruction must be 1 (ie Indirect)

 the zero page option must be enabled

The assembler file called EDUC8 PrinterCodes.asm is an example of using the

zero page mode of operation and is available in the installation directory.

The original file with further details can be found at this link.

http://www.sworld.com.au/steven/educ-8/educ8_page_zero.pdf

http://www.sworld.com.au/steven/educ-8/educ8_page_zero.pdf

84

WIF Mode

What IF mode is an attempt to say:

“Back then, What IF the EDUC-8 had...”

This mode moderately beefs up the original design to increase its performance and
versatility and works with the PC Emulator and the PIC project.

Basic Changes

 Memory Size 1K ROM 16 bit
 RAM Size 64 bytes 8 bit
 EEPROM Size 32 bytes 8 bit
 Data paths Parallel, except for Input / Output.
 Instructions 55
 Indirect Addressing Yes
 Subroutine Nesting 3 level return stack

WIF Mode is enabled by checking the [What IF Mode] item from the Options menu.

85

WIF Front Panel

LED Function
PC These indicate the lower 8 bits of the Program Counter.
MA These are used for instruction data processing
MB These are used for instruction data processing
AC These indicate the status of the Accumulator

I Lit if current instruction accesses Indirect RAM register
AC Lit if current instruction accesses AC
REG Lit if current instruction accesses a RAM register
PC Lit if current instruction accesses the PC

REG Lit if current instruction is a Register type
VAL Lit if current instruction is a Value type
GEN Lit if current instruction is a General type
IO Lit if current instruction is an Input/Output type

RUN Program Run indicator
READ Code execution Read cycle
EXEC Code execution Exec cycle
WRITE Code Execution Write cycle

WIF WIF mode indicator
AO/BO Output reset pulse indication – AO (After output), BO (Before output)
PC9 Bit 9 of PC address
PC8 Bit 8 of PC address

Switch Functions

The front panel switches work similar to the original EDUC-8.

In WIF mode, the Deposit and Exam switches become TRIG1 and TRIG2.

The Load Address range is similar to the EDUC-8, meaning that only ROM
addresses 0 – 255 can be set. This means all programs should start somewhere
between ROM address $000 and $0FF. It is most likely that WIF programs will begin
from ROM address $000 so this shouldn’t be a problem.

All modules with the exceptions of the Tape Read, Tape Write and the Magnetic
Tape Storage, can be connected to the WIF computer.

There are additional windows available to view RAM and EEPROM contents and you
can edit these values by double clicking any row within the grids.

There are also some code examples included in the install directory with the prefix “
WIF_ “.

86

WIF Memory Map

 ROM RAM EEPROM STACK
$000 $00 $00 1

 2

 3

$3FF $3F $1F

The ROM space consists of 1024 (1K) 16 bit words.
The full ROM space is accessible to all ROM address instructions except for PC as [TGT].

The general memory space consists of 64 bytes of RAM arranged in two banks or 32 bytes.

These banks are accessed by setting the RP bit in the STATUS register.

INDR (RAM $00) is used for indirect memory addressing and general purpose RAM.

MULH and MULL are used to store the result of the 8 bit multiply instruction, MULTA.

MULH holds the upper 8 bit result.

MULL holds the lower 8 bit result.

There are 32 EEPROM bytes for persistent storage and are accessible via the AC register.

The STATUS register has 4 active bits - Z, C, DC and RP.

Z is a Zero bit and is set to 1 when the relevant data is zero, or cleared for non zero.

C is a Carry bit and is set or cleared after adding or subtracting values. It can also be
manually set or cleared.

DC is a Digit Carry bit and is set or cleared after adding or subtracting values. It is only
concerned with a carry from the lower nibble to the upper nibble. It can also be manually set
or cleared.

RP is the RAM Page bit. 0 = Page zero access, 1 = Page one access.

The 10 bit Program Counter (PC) covers the full ROM space and can be modified by code.

There are three stack registers that allow for two levels of subroutine nesting.

The GOSUB instruction pushes the current PC + 1 onto the stack.

The RETURN and RETVAL instructions pop the stack into the PC.

PC

 RAM Page 0

 RAM Page 1

$1F

$20

STATUS

ROMPTR

MULH

MULL

{ INDR }

87

WIF Assembler

Assembler Directives

_ISWIMODEON Alerts the user to set the correct WIF/Normal
_ISWIMODEOFF mode of operation when assembling code.
_SETPC Set PC address - ROM range is $000 - $3FF

_ISRESETBO These directives are same as the T1 T13 flag

_ISRESETAO for normal operation
_RAM Specifies an area to define RAM variables
_ENDRAM End of RAM definitions
_EEP Specifies an area to define EEPROM variables
_ENDEEP End of EEPROM definitions
_CONST Define a constant

The _RAM directive allows entry of up to 64 RAM variables.
The _ENDRAM directive must terminate the end of the RAM variables.

 <NAME> <Address (Optional)> <Size (Optional)>

Examples:

_RAM

RAM0 / defines register called RAM0 at address 0

RAM1 / defines register called RAM1 at address 1

Flags #$05 / defines register called Flags at address 5

 / address pointer will increment from 5 if no other

 / address directives are found

Buffer :#D10 / defines a 10 byte buffer area starting at $06

Store #$1A :#$05 / defines a 5 byte buffer area starting at $1A

Count / define count, at address $1F

_ENDRAM

The _EEP directive allows entry of up to 32 EEPROM variables.
The _ENDEEP directive must terminate the end of the EEPROM variables.

 <NAME>

Example:

_EEP

CountH / defines register called CountH at address 0

CountL / defines register called CountL at address 1

_ENDEEP

A constant can be defined anywhere in the assembler file and non 2’s compliment numbers
can only be defined as a number between 0 and 1023 ($0000 - $FFFF). See also - Default
Constants.

Examples:

 _CONST InitVal #$FF
 _CONST ROMaddr #$1002

 _CONST Buffer / equivalent to RAM #$06 (above)

 _CONST Buffer + #D1 / equivalent to RAM #$07 (above)

88

WIF Instruction Set Summary

Instruction Code Flags Affected

NOP No Operation 0000 00xx xxxx xxxx

ADDVA Add value to AC 0001 00xx vvvv vvvv Z C DC

ANDVA AND value with AC 0010 00xx vvvv vvvv Z

IORVA Inclusive OR value with AC 0011 00xx vvvv vvvv Z

MOVVA Move value into AC 0100 00xx vvvv vvvv

SUBVA Subtract value from AC 0101 00xx vvvv vvvv Z C DC

XORVA Exclusive OR value with AC 0110 00xx vvvv vvvv Z

SKIPIFA Test AC, skip if various functions 0111 00md vvvv zzzz

RDSWA Read SR<7:0> switches into AC 1000 00xx xxxx xxxx Z

DAAC Decimal adjust AC 1001 00xx xxxx xxxx C

MULTA Multiply AC with value [BY] [HA] [LA] 1010 00xx vvvv vvvv

RANDA Random [0 – 255] into AC 1011 xxxx xxxx xxxx Z

ADDR Add to register 0000 01ss tter rrrr Z C DC

ANDR AND with register 0001 01ss tter rrrr Z

CLRR Clear register 0010 01ss ttxr rrrr Z

DECR Decrement register 0011 01ss ttxr rrrr Z

DECRSZ Decrement register, Skip if 0 0100 01ss ttxr rrrr

INCR Increment register 0101 01ss ttxr rrrr Z

INCRSZ Increment register, Skip if 0 0110 01ss ttxr rrrr

IORR Inclusive register 0111 01ss tter rrrr Z

MOVR Move register 1000 01ss ttxr rrrr Z

ROTL Rotate Left register through Carry 1001 01ss ttxr rrrr C

ROTR Rotate Right register through Carry 1010 01ss ttxr rrrr C

SUBR Subtract register 1011 01ss tter rrrr Z C DC

XORR Exclusive register 1100 01ss tter rrrr Z

EXCHR Exchange register nibbles 1101 01ss ttxr rrrr

COMPR Compliment register 1110 01ss ttxr rrrr Z

GOSUB Go to subroutine 0000 10aa aaaa aaaa

GOTO Go to address 0001 10aa aaaa aaaa

RETURN Subroutine return 0010 10xx xxxx xxxx

RETVAL Subroutine return with value in AC 0011 10xx vvvv vvvv

HALT Stop program execution 0100 10xx xxxx xxxx

SKIPSB Skip if STATUS bit Set/Clear 0101 10xx xxxx mzdc

SETSTB Set/Clear STATUS flags 0110 10xx xxxx mzdc

SETB Set register bit 0111 10ss bbbr rrrr

CLRB Clear register bit 1000 10ss bbbr rrrr

TOGLB Toggle register bit 1001 10ss bbbr rrrr

SKIPBS Skip if register bit set 1010 10ss bbbr rrrr

SKIPBC Skip if register bit clear 1011 10ss bbbr rrrr

ROMADR Set ROM access address [H L] [Addr] 1100 10xb vvvv vvvv

SKIPIF Skip on input flag 0000 11xx xxvx xxxx

READID Read input device 0001 11xx ttvr rrrr Z

RESETI Reset input flag 0010 11xx xxvx xxxx

RDRSTI Read input device and reset flag 0011 11xx ttvr rrrr Z

SKIPOF Skip on output flag 0100 11xx xxvx xxxx

WRITOD Load output device 0101 11ss xxvr rrrr

RESETO Reset output flag 0110 11xx xxvx xxxx

WTRSTO Load output device and reset flag 0111 11ss xxvr rrrr

SEROUT AC -> serial port 1000 11xx xxxx xxxx

SKIPNS Skip if no serial IN -> AC 1001 11xx xxxx xxxx Z

SERACC Serial port access [PC] [PIC] 1010 11xx xxxx xxxp

ROMACC ROM access [H L] [R W] ([I] Optional) 1011 11xx xxii iiab

SKIPTS Skip on trigger switch [1 2] [H L] 1100 11xx xxxx xxts

TIMER Timer Function 1101 11xf vvvv vvvv

EEPROM EEPROM Access [0-31] [R] [W] [SKIPWT] 1110 11xs arwe eeee Z (Read)

x Don’t care

p Serial port access

v Input Output device

b High or Low bit

i Increment

a Read / Write access

t Trigger mode

s Trigger switch

f TIMER function

m STATUS Set/Clear

z STATUS Z

d STATUS DC

c STATUS C

e Result Destination

r Mulresa H L

ff Indr function

tt Target register [TGT]

ss Source register [SRC]

bbb Bit number

zzzz zzzz Instruction function

r rrrr RAM address

vvvv vvvv Value

pppp pppp Program address H L

aa aaaa aaaa ROM address

Z Zero flag

C Carry flag

md SKIPA mode

iiii ROMACC I functions

arwe eeee EEPROM access, address

89

WIF Instruction Set – Group 00

NOP No Operation NOP Flags affected: None

 Example: NOP

ADDVA Add value to AC ADDVA [VALUE] Flags affected: Z C DC

 Example: ADDVA #$01
 AC + #$01 -> AC

ANDVA AND value with AC ANDVA [VALUE] Flags affected: Z

 Example: ANDVA CONST_VAL
 CONST_VAL = #$01 AC AND #$01 -> AC

IORVA Inclusive OR value with AC IORVA [VALUE] Flags affected: Z

 Example: IORVA #$01
 AC OR #$01 -> AC

MOVVA Move value into AC MOVVA [VALUE] Flags affected: None

 Example: MOVVA RAM_COUNT

 RAM_COUNT = RAM 0 #$00 -> AC

SUBVA Subtract value from AC SUBVA [VALUE] from AC Flags affected: Z C DC

 Example: SUBVA #$01
 AC - #$01 -> AC

XORVA Exclusive OR value with AC XORVA [VALUE] Flags affected: Z

 Example: XORVA #$01
 AC XOR #$01 -> AC

SKIPIFA Test AC, skip if function succeeds SKIPIFA [POS NEG] Flags affected: None
 [<, =, >= (Val)]

 Examples: SKIPIFA POS IF 2’S COMP AC = +VE, PC = PC + 1
 SKIPIFA >= 5 IF A >= 5, PC = PC + 1

 SKIPIFA = #$45 IF A = $45, PC = PC + 1

RDSWA Read SR<7:0> switches -> AC RDSWA Flags affected: Z

 Example: RDSWA

 SR<7:0> -> AC

DAAC Decimal adjust AC DAAC Flags affected C

DACC adjusts the 8-bit value in AC, which has the result from an earlier addition of two variables, which were in packed BCD
format, and produces a correct packed BCD result.

 Example: MOVVA #$48 / packed decimal 4 8 in BCD format

 ADDVA #$23 / packed decimal 2 3 in BCD format

 AC = $6B / Hexadecimal result in AC

 DAAC

 AC = $71 / packed decimal 7 1 in BCD format

MULTA Multiply AC with value MULTA [Func] (VAL) Flags affected None

 Example: MULTA #$05 / when AC = $34

 / MULH = $01 MULL = $04

 Example: MULTA HA / MULTA H result to AC

 MULTA LA / MULTA L result to AC

RANDA Random [0 – 255] into AC RANDA Flags affected Z

 Example: RANDA / Psuedo random value -> AC

Note: Randomness will diminish if the RANDA instruction is used in quick succession.

90

WIF Instruction Set – Group 01

ADDR ADD register ADDR [SRC] [TGT] [RES] Flags affected: Z C DC

 Example: ADDR 3 A S

 Register 3 + AC -> Register 3

ANDR AND register ANDR [SRC] [TGT] [RES] Flags affected: Z

 Example: ANDR A #$01 T

 AC AND Register #$01 -> Register #$01

CLRR Clear register CLRR [SRC] [TGT] Flags affected: Z

 Example: CLRR #$01 #$01

 Register #$01 = 0 -> Register #$01

DECR Decrement register DECR [SRC] [TGT] Flags affected: Z

 Example: DECR #$01 P

 Register #$01 – 1 -> PC

DECRSZ Decrement register, Skip if 0 DECSZ [SRC] [TGT] Flags affected: None

 Example: DECSZ A A

 AC - 1 -> AC (PC + 1 IF = 0)

INCR Increment register INCR [SRC] [TGT] Flags affected: Z

 Example: INCR I I

 Register (I) + 1 -> Register (I)

INCRSZ Increment register, Skip if 0 INCSZ [SRC] [TGT] Flags affected: None

 Example: INCSZ A A

 AC + 1 -> AC (PC + 1 IF = 0)

IORR Inclusive OR register IORR [SRC] [TGT] [RES] Flags affected: Z

 Example: IORR P A S

 PC OR W -> PC

MOVR Move register MOVR [SRC] [TGT] Flags affected: Z

 Example: MOVR #$01 I

 Register #$01 -> Register (I)

ROTL Rotate Left register through Carry ROTL [SRC] [TGT] Flags affected: C

 Example: ROTL #$01 A

 Rotate register #$01 left -> AC

ROTR Rotate Right register through Carry ROTR [SRC] [TGT] Flags affected: C

 Example: ROTR #$01 A

 Rotate register #$01 right -> AC

SUBR Subtract register SUBR [SRC] from [TGT] [RES] Flags affected: Z C DC

 Example: SUBR P A T

 AC – PC -> A

XORR Exclusive OR register XORR [SRC] [TGT] [RES] Flags affected: Z

 Example: XORR I #D4 S

 Register INDIRECT XOR Register 4 -> Register INDIRECT

EXCHR Exchange register nibbles EXCHR [SRC] [TGT] Flags affected: None

 Example: EXCHR COUNT A

 Register COUNT exchange nibbles -> AC

 COUNT = $A5, after instruction, COUNT = $A5, AC = $5A

COMPR Compliment register COMPR [SRC] [TGT] Flags affected: Z

 Example: COMR COUNT A

 Compliment register COUNT -> AC

 If COUNT = $AA, AC = #55

91

WIF Instruction Set – Group 10

GOSUB Go to subroutine GOSUB [ADDRESS] Flags affected: None

 Example: GOSUB #$154

 PC + 1 -> Stack

GOTO Go to address GOTO [ADDRESS] Flags affected: None

 Example: GOTO LABELB

RETURN Subroutine return RETURN Flags affected: None

 Example: RETURN

 Stack -> PC

RETVAL Subroutine return with value in AC RETVAL [VALUE] Flags affected: None

 Example: RETVAL #D34

 #D34 -> AC, Stack -> PC

HALT Stop program execution HALT Flags affected: None

 Example: HALT

STSKIP Skip if STATUS bit set/clear STSKIP [C DC Z] [SET CLR] Flags affected: Z C DC

 Example: STSKIP C SET

 If Carry = Set, PC + 1 -> PC

STFLAG Set/Clear STATUS flags STFLAG [C DC Z] [SET CLR] Flags affected: Z C DC

 Example: STFLAG DC CLR

 DC Flag = Clear

SETB Set register bit SETB [A I P] [BIT] Flags affected: None

 Examples: SETB #$03 7 1 -> RAM $03 bit 7

 SETB I 6 1 -> RAM(I) bit 6

CLRB Clear register bit CLRB [A I P] [BIT] Flags affected: None

 Examples: CLRB P 4 0 -> PC bit 4

 CLRB A 0 0 -> AC bit 0

TOGLB Toggle register bit TOGB [A I P] [BIT] Flags affected: None
 Examples: AC = #B11111111

TOGLB A 4 Toggle AC bit 4 AC = #B11101111

 TOGLB A 4 Toggle AC bit 4 AC = #B11111111

SKIPBS Skip if register bit set SKIPBS [A I P] [BIT] Flags affected: None

 Example: SKIPBS A 7

 If AC bit 7 = 1 then PC + 1 -> PC

SKIPBC Skip if register bit clear SKIPBC [A I P] [BIT] Flags affected: None

 Example: SKIPBS I 7

 If RAM(I) bit 7 = 1 then PC + 1 -> PC

ROMPTR Set ROM pointer register ROMPTR [H L] [Address] [Increment] Flags affected: None

 Example: ROMPTR H #$01

 ROMPTR L #$00

 ROMPTR register = $100

92

WIF Instruction Set – Group 11

SKIPIF Skip on input flag SKIPIF [DEV] Flags affected: None

 Example: SKIPIF 0

 If Input flag Device 0 = LO, PC + 1 -> PC

READID Read input device READID [DEV] [A R I P] Flags affected: Z

 Example: READID 0 AC

 Input Device 1 data shifted into AC

RESETI Reset input flag RESETI [DEV] Flags affected: None

 Example: RESETI 1

 Input Device 1, Input Flag = HI

RDRSTI Read input device and reset flag RDRSTI [DEV] [A R I P] Flags affected: Z

 Example: RDRSTI 0 I

 Input Device 0 data shifted into RAM(I)

 Input Device 0, Input Flag = HI

SKIPOF Skip on output flag SKIPOF [DEV] Flags affected: None

 Example: SKIPOF 1

 If Output flag Device 0 = LO, PC + 1 -> PC

WRITOD Write output device WRITOD [DEV] [A R I P] Flags affected: None

 Example: WRITOD 1 A

 Output Device 1 data shifted into AC

RESETO Reset output flag RESETO [DEV] Flags affected: None

 Example: RESETO 0

 Output Device 0, Input Flag = HI

WTRSTO Write output device and reset flag WTRSTO [DEV] [A R I P] Flags affected: None

 Example: WTRSTO 0 #D2

 Output Device 0 data shifted from RAM #D2

 Output Device 0, Input Flag = HI

SEROUT AC -> serial port SEROUT Flags affected: None

 Example: SEROUT

 AC -> Serial Port

SKIPNS Skip if no serial IN -> AC SKIPNS Flags affected: Z

 Example SKIPNS

 If no data received to serial port, execute next

 If data received, -> AC, skip next instruction

SERACC Serial port access SERACC [ON] [OFF] Flags affected: None

 Example: SERACC ON

 Serial Port Access is turned ON

ROMACC Access program ROM ROMACC [R W] [H L] ([I] Optional) Flags affected: None

 Examples: ROMACC W H I+

 AC -> ROM[ROMPTR][High Byte] and post increment ROMPTR

 ROMACC R L

 ROM[ROMPTR][Low Byte] -> AC and no Inc or Dec ROMPTR

SKIPTS Skip on Trigger Switch SKIPTS [1 2] [H L] Flags affected: None

 Examples: SKIPTS 1 H

 If Trigger switch 1 = H, PC + 1 -> PC

 SKIPTS 2 L

 If Trigger switch 2 = L, PC + 1 -> PC

 See IO Port Interfaces

TIMER Timer Function TIMER [ON][OFF] [SKIPOF] [(1-255)] Flags affected: None

 Examples: TIMER #D20 Timer Delay = 20 * 10 = 200mS

 TIMER SKIPOF If Timer has overflowed PC = PC + 1

 See [WIF Clock.asm] for a code example

EEPROM EEPROM Access EEPROM [Address] [R] [W] [SKIPWC] Flags affected: Z

 Examples: EEPROM 0 / set EEPROM address pointer = 0

 EEPROM R / EEPROM ADDRESS 0 -> AC (Pointer + 1)

 MOVVA #$FF

 EEPROM W / EEPROM ADDRESS 1 = FF (Pointer + 1)

 WAIT, EEPROM SKIPWC / wait until EEPROM write completes

 GOTO WAIT

93

[TGT] or [SRC] arguments specify where the data for an instruction comes from,

and where it is deposited after the instruction executes. These two items can specify
a RAM address, or an address code.

Address Codes: [A] Accumulator

 [R] Register

 [I] Indirect

 [P] Program Counter

If the [SRC] of an instruction is the Program Counter, then the lower 8 bits of the PC

are read.

If the [TGT] of an instruction is the Program Counter register, the final PC

address is,

(ROMPTR high byte * 256) + 8 lower bits from the instruction.

If the target [TGT] of an instruction is to be [R], then the [R] is optional.

Example: decr Count r is the same as decr Count

ADDR ANDR IORR SUBR and XORR instructions have an additional argument

which is used to specify if the instruction result goes to the SRC or the TGT register.

 ADDR A 5 T / result goes to TGT (RAM address 5)

 XORR A TIMER S / result goes to SRC (AC)

Notes:

RESETO, WTRSTO instructions

Output devices can receive a reset pulse before data is shifted out or after data is
shifted out. See T1 T13

Serial Port

The serial port is shared between the PC communications and the WIF mode of
operation. If the Serial Access is turned ON, then the EDUC-8 PC USB interface
should not be connected or it may receive data and interpret it incorrectly. The PIC’s
operating code will ignore any serial data when the Serial Access is turned ON.

Serial Access is turned OFF when either of the LA switch is used, when transferring

a program to memory, when the PIC is reset, or with the instruction SERACC OFF.

The serial port setting is 19200 baud, 8 data bits, 1 stop bit.

The serial port can receive up to two bytes before reading the input buffer. If more
bytes are received when the buffer is full, all but the first byte in the buffer can be
read. After reading, the buffer will function normally.

94

Instruction Execution

Most instructions take 4 cycles to complete and transfer data in a parallel mode.

 Cycle 1 Initialize
 Cycle 2 Read
 Cycle 3 Execute
 Cycle 4 Write

The instructions READID, RDRSTI, WRITOD and WTRSTO take an extra 8 cycles to

execute because of the need to serial in or out the 8 bits of data. In addition, the

WTRSTO instruction takes an extra 2 cycles because of the requirement to reset the

output device before or after data transmission.

HIGH LOW Operands

These operands work with most instructions and recover the upper byte (HIGH) or
lower byte (LOW) of a value.

Examples:

_CONST Count #$1FFF

$1FE: label, nop / code is at PC address $1FE

 movva HIGH label / AC = #$01

 movva LOW Count / AC = #$FF

Indirect addressing is invoked when the instruction [TGT] or [SRC] argument is (I).

 RAM

Example: INCR I A / increment [I] -> AC

 $05 $20

Indirect addressing can access all bytes in RAM independent of the STATUS RP bit.

Indirect register points to RAM $05

$20 + 1 = $21

AC = $21

RAM $00 = $05

RAM $05 = $20

$00 $05

95

ROMPTR and ROMACC Instructions

The [ROMPTR] register is a 16 bit register.

The high byte <1:0> is used to compute the PC address if the [TGT] of an instruction is [P].

Example: ROMPTR H #$01 / set ROMPTR = $103
 ROMPTR L #$03

 High Low

[ROMPTR] 1 03 Value = $103 HEX (259 Decimal)

Examples:

 AC = $30 MOVR A P / AC -> PC

 PC = ROMPTR[H <1:0>] + AC + 1
 PC = $131

 COUNT = $01 INCR COUNT P / INCR COUNT -> PC

 $01 + 1 = 2
 PC = ROMPTR[H <1:0>] + 2 + 1
 PC = $100 + 2 + 1 = $103

 COUNT = $FF INCRSZ COUNT P / INCRSZ COUNT -> PC

 $FF + 1 = 0, Skip is True, but ignored
 PC = ROMPTR[H <1:0>] + Count + 1
 PC = $100 + $00 + 1 = $101

The ROMPTR register [High <1:0> - Lo <7:0>] is used as the ROM address for the ROM

access instruction (ROMACC).

ROMACC takes either 2 or 3 arguments.

 W Write R Read

 H High byte L Low byte

Action (Optional)

[Action] can have the following types:

 +I pre increment ROMPTR ROMPTR incremented prior to ROMACC execute

 I+ post increment ROMPTR ROMPTR incremented after ROMACC executes

 -I pre decrement ROMPTR ROMPTR decremented prior to ROMACC execute

 I- post decrement ROMPTR ROMPTR decremented after ROMACC executes

Example: ROM Memory $103 = $8440 (MOVR A #$00)

 ROMPTR = $103

 AC = $xx ROMACC R H / Read ROM High byte -> AC

 AC = $84

 AC = $84 ROMACC R L / Read ROM Low byte -> AC

 AC = $40

In both cases [Action] was omitted, so ROMPTR stays the same = $103.

96

Example:
 _RAM

Index

 _ENDRAM

$2CF: Table, movr a p / PC address $2CF, instruction = $84C0

 ROMPTR H HIGH Table / set ROMPTR = $2CF

 ROMPTR L LOW Table

 MOVVA #$85 / value $85

 ROMACC W H / write into ROM[ROMPTR H]

 MOVVA #$C0 / value $C0

 ROMACC W L I+ / write into ROM[ROMPTR L], Post Increment

$2CF: Table, movr Index p / PC address $2CF = new instruction $85C0

 ROMaddr = $2D0

Table access can be accomplished by using the [P] argument in an instruction.

Example:

$2CF: Table, movr Index p

 retval #$00

 retval #$01

 retval #$02

 retval #$03

As the [P] argument uses the high byte of the ROMPTR register to compute the final ROM
address, it must be set to the correct ROM page.

If the above code executes at address $2CF when ROMPTR is set to $0000, the final PC
address will be $0D0 instead of the required $2D0.

Example:

$2CF: Table, ROMPTR H High Table / match ROMPTR with [Table] start

movr Index p

 retval #$00

 retval #$01

 retval #$02

 retval #$03

The entire data table must be in the same ROM page unless special code adjusts the
ROMPTR register.

Example:

$1FA: Table, ROMPTR H High Table / match ROMPTR with Table start

$1FB: movr Index p

$1FC: retval #$00

$1FD: retval #$01

$1FE: retval #$02

$1FF: retval #$03

$200: retval #$04 / table cannot be accessed from here

$201: retval #$05 / when [Index] is >= 4

$202: retval #$06

This concept can be seen in the following example code as a key code jump table.

WIF Clock.asm

97

Z C DC FLAGS

SUBR [SRC] from [TGT]

T > S C=1 Z=0

T = S C=1 Z=1

T < S C=0 Z=0

SUBVA [VAL] from [AC]

AC > V C=1 Z=0

AC = V C=1 Z=1

AC < V C=0 Z=0

The [DC] bit is set when there is a carry or borrow generated from the low nibble
(BITS <3:0>) after the appropriate instruction executes.

Examples:

 MOVVA #$0F

 ADDVA #$00 / Z = 0, C = 0, DC = 0

 MOVVA #$0F

 ADDVA #$01 / Z = 0, C = 0, DC = 1

SUBR [SRC] from [TGT] <3:0>

T > S C=1

T = S C=1

T < S C=0

SUBVA [VAL] from [AC] <3:0>

AC > V C=1

AC = V C=1

AC < V C=0

DAAC Instruction Operation

 if Carry = 0 prior to DACC then

 after DAAC if previous Wreg was < $99, then

 C=0

 else

 C=1

$21 + $12 -> AC = $33 $66 + $45 -> AC = $AB

DAAC -> AC = $33 DAAC -> AC = $11

C=0 C=1

98

IO Port Interfaces

The SR<7:0> and the LA and DEP switches are effectively ANDed with the external
SR<7:0>, and the LA and DP inputs.

When the parallel Input Dev0 is used, the SR<7:0> and LA and DP switches must be
set to 1, otherwise the computer will not recognise changes from the external inputs.

In WIF mode, the DEP and EXAM switches become TRIG1 and TRIG2.

These switches can now provide triggers to modify code execution via the instruction

SKIPTS.

TRIG1 can also be accessed externally from the Dev0 Parallel Port.

SR7
EXT 7

LA
EXT LA

DEP
EXT DEP

(EXT TRIG1)

SR1
EXT 1

SR2
EXT 2

SR3
EXT 3

SR4
EXT 4

SR5
EXT 5

SR6
EXT 6

SR0
EXT 0

Input To Computer

99

Port Connections

Dev 0 Parallel Port

Dev 0 OUT

Dev 1 OUT

Dev 1 IN

USB ICSP

1

1

1

1
1

1

MUX LINKS

1

ICSP
1
2
3
4
5
6

N/C
RB6i
RB7i
GND
5V
MCLR

USB
1
2
3
4
5
6

MCLR
PIC TX
PIC RX
5V
N/C
GND

MUX
1
2
3
4
5
6

RB6i
PIC RB6
DEP 0
RB7i
PIC RB7
LA 0

DEV 0 OUT
1
2
3
4
5
6
7
8
9
10

CLOCK OUT
CLOCK OUT
RESET OUT
RESET OUT
RESET IN
RESET IN
DATA OUT
DATA OUT
5V
GND

DEV 1 OUT
1
2
3
4
5
6
7
8
9
10

CLOCK OUT
CLOCK OUT
RESET OUT
RESET OUT
RESET IN
RESET IN
DATA OUT
DATA OUT
5V
GND

DEV 1 IN
1
2
3
4
5
6
7
8
9
10

CLOCK OUT
CLOCK OUT
RESET OUT
RESET OUT
RESET IN
RESET IN
DATA IN
DATA IN
5V
GND

NORMAL ICSP

DEV 0 IN – PARALLEL PORT
1
3
5
7
9
11
13
15
17
19

GND
5V
CLOCK OUT
DATA IN
RESET IN
N/C
N/C
RESET OUT
EXT DEPOSIT (TRIG1)
EXT LOAD ADDRESS

2
4
6
8
10
12
14
16
18
20

GND
EXT SR0
EXT SR1
EXT SR2
EXT SR3
EXT SR4
EXT SR5
EXT SR6
EXT SR7
N/C

MUX LINKS

100

Typical Serial Input / Output Interface Circuit Concept

The NAND gate flip flop circuit that controls the interface RESET could also be
controlled by using two microprocessor pins if it is part of the interface circuit.

The RESET IN pin should be Logic 0 when the device is ready to accept input data
or ready to transmit output data.

The RESET OUT pin is pulsed Logic 0 to reset the flip flop on the T1 (BO) or T13
(AO) clock cycle – RESET IN goes to Logic 1. Data is shifted in or out during cycles
T2 – T9.

Input Example – Keyboard.

 The keyboard interface is connected and resets itself when powered up.

 Reset In is HI.

 This tells the EDUC-8 code that the keypad is not ready to send data.

 The user presses a key on the keypad.

 The interface sets Reset In to LO.

 The EDUC-8 code sees the LO and starts to send 8 Clock pulses.

 On each HI going clock pulse the interface sets the Data line HI or LO for the

EDUC-8 to read on the next LO going Clock signal.

 After 8 clock pulses, the EDUC-8 then briefly sets Reset Out LO.

 The keypad interface then sets Reset In HI and gets ready to accept a new

key press.

101

Output Example – LED Display

 The LED interface is connected and resets itself when powered up.

 Reset In is HI.

 This tells the EDUC-8 code that the display is not ready to accept data.

 The LED interface is configured so that after a delay timer expires, Reset In

goes LO.

 The EDUC-8 code sees the LO and starts to send 8 Clock pulses.

 It will set the data out pin HI or LO when the Clock signal is HIGH.

 The LED interface will accept HI or LO Data when Clock goes LO.

 After 8 clock pulses, the EDUC-8 then briefly sets Reset Out LO.

 The LED interface then sets Reset In HI, resets the timer and then displays

the received data.

It is possible for an output device to require a reset pulse prior to accepting data, (to
wake it up), or after receiving data, (to clean up afterwards).

As the data is clocked out on the T2-T9 cycles, the Reset on T1 cycle or reset on
T13 cycle gives that functionality.

WIF mode has BO (Before Output) or AO (After Output).

This input and output example is available to try out by using the EDUC8

Keypad.asm and the WIF Keypad.asm code examples.

There is also PIC code available for a PIC16F18345 chip to provide a keyboard and
LED display interface. This can also be used with the LED and KEY interface
circuits.

102

Default Constants

There are some predefined constants available. These can be used directly in code.

0 0 / basic numerals

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

INDR 0 / indirect register $00

DEV0 0 / IO devices

DEV1 1

DEV0_IN 0

DEV1_IN 1

DEV0_OUT 0

DEV1_OUT 1

TRIG1 1 / trigger switches

TRIG2 2

/ 10 digit display

D10_IDX $40

D10_OFF $50

D10_ON $5F

D10_ERR $60

D10_INI $70

/ Alphanumeric display

AL_IDX 0

AL_RED 16

AL_GRN 17

AL_YEL 18

AL_BLU 19

 D10_0 0

 D10_1 1

 D10_2 2

 D10_3 3

 D10_4 4

 D10_5 5

 D10_6 6

 D10_7 7

 D10_8 8

 D10_9 9

 D10_NEG 10

 D10_COL 11

 D10_DP 12

 D10_BK 13

 D10_A 14

 D10_Lb 15

 D10_C 16

 D10_Lc 17

 D10_Ld 18

 D10_E 19

 D10_F 20

 D10_G 21

 D10_H 22

 D10_Lh 23

 D10_I 24

 D10_Li 25

 D10_J 26

 D10_L 27

 D10_Ln 28

 D10_Lo 29

 D10_P 30

 D10_Lq 31

 D10_Lr 32

 D10_S 33

 D10_Lt 34

 D10_U 35

 D10_Lu 36

 D10_Y 37

AL_INI 128

AL_CLR 129

AL_CL1 130

AL_CL2 131

AL_TLN 132

AL_BLN 133

AL_OFF 134

AL_ON 135

